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a b s t r a c t

Exploratory data analysis methods are essential for getting insight into data. Identifying the most

important variables and detecting quasi-homogenous groups of data are problems of interest in this

context. Solving such problems is a difficult task, mainly due to the unsupervised nature of the underlying

learning process. Unsupervised feature selection and unsupervised clustering can be successfully

approached as optimization problems by means of global optimization heuristics if an appropriate

objective function is considered. This paper introduces an objective function capable of efficiently guiding

the search for significant features and simultaneously for the respective optimal partitions. Experiments

conducted on complex synthetic data suggest that the function we propose is unbiased with respect to

both the number of clusters and the number of features.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Clustering is the task of identifying natural groups in data.
The problem can be stated more formally as follows:

Given a set S of n data items each of which is described by m

numerical attributes: S¼{d1,d2,y,dn} where di ¼ ffi1,fi2, . . . ,fimgA
I1 � I2 � � � � � Im �Rm

8i¼ 1: :n, find

C� ¼ argmax
C AO

FðCÞ

where

� O is the set of all possible hard partitions C of the data set S,
where each C is a hard partition if C¼{C1, C2,y,Ck},

Sk
i ¼ 1 Ci ¼ S

and Ci

T
Cj ¼ | 8i,j¼ 1: :k,ia j,kAf1,2, . . . ,cardðCÞg.

� F is a function which measures the quality of each partition CAO
with respect to the requirement implicitly described above by
the word natural: similar data items should belong to the same
cluster and dissimilar items should reside in distinct clusters.

The notion of similarity is seldom given in the problem
statement.

If the number of clusters k is known in advance the problem is
called supervised clustering; otherwise, it is called unsupervised

clustering.
This definition leaves space to a wide choice of objective

functions and similarity functions, depending strongly on the

domain under investigation. The choice is rarely straightforward.
The literature records a lot of comparative studies regarding the
impact of various objective functions on the solution especially in
the case of unsupervised clustering. As for the similarity function, if
extra-information is available in the form of pairwise constraints of
data items that must reside in the same cluster (the case of semi-
supervised clustering and supervised classification) then an opti-
mal distance metric can be learned. For unsupervised clustering,
metric learning is usually performed in a pre-processing step, using
methods that reduce data dimensionality through statistical
analysis.

Dimensionality reduction is a problem intensively studied in
both supervised and unsupervised clustering. The main goal is to
reduce the size of the representation of data items in order to
decrease the computational cost of subsequent steps, with minimal
alterations in terms of descriptive accuracy. Dimensionality reduc-
tion is approached in two distinct ways: feature selection (FS) and
feature extraction (FE). The feature selection approach searches for
irrelevant original features (attributes) and excludes them; addi-
tionally, feature weighting may be performed. Feature extraction
methods create new features from the original ones. The points in
the original D-dimensional feature space are mapped into new
points in a d-dimensional feature space, doD. Compared to FS
methods, FE methods provide an improved lower-dimensional
representation for the full data set; however, an important draw-
back of FE methods is that the relationship between the original
and the reduced space is more difficult to interpret.

Feature selection plays different roles in the supervised and,
respectively, the unsupervised scenario. In both situations, in a pre-
processing step redundant features may be eliminated by means of
statistical analysis. Further, in classification feature selection aims
at identifying those features that predict with highest accuracy the
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appropriate class labels, while in clustering feature selection aims
at identifying the features which generate good partitions.

Unsupervised feature selection is performed by means of:

� filter approaches, which compute some entropy measure in
order to asses the grouping tendency of data items in different
feature subspaces. The subsequent unsupervised learning
method is completely ignored.
� wrapper approaches, which actually search for partitions in

different feature subspaces using a clustering algorithm. These
approaches give better results but at higher comput-
ational costs.

In view of the definition of clustering, feature selection can be
stated as an optimization problem:

find

w� ¼ argmax
w

Q ðSuÞ

where

� w¼ fw1,w2, . . . ,wmgAf0,1gm is a binary string;
� Su is the data set constructed from the original set S and the

string w as follows: Su¼ fd1u,d2u, . . . ,dnug, diu¼ fw1 � fi1,w2 � fi2,
. . . ,wm � fimg, 8i¼ 1: :n;
� Q ðSuÞ is a function which measures the tendency of data items in

set Su to group into well-separated clusters; it can be expressed
by means of the entropy (filter approaches) or of a fitness
function which measures the quality of a partition detected by a
clustering algorithm (wrapper approaches). In the latter case
feature weighting is akin to solving the clustering problem in
different feature spaces.

Our study approaches unsupervised feature selection in a
wrapper manner. In this regard, a new optimization criterion
largely unbiased with respect to the number of clusters is intro-
duced in Section 2. Section 3 discusses the normalization of the
clustering criterion with respect to the number of features. Section
4 presents a framework for performing unsupervised feature
selection in conjunction with unsupervised clustering and sum-
marizes the experimental results. Section 5 draws conclusions and
points to future work.

2. Unsupervised clustering: searching for the optimal number
of clusters

Classical clustering methods, such as k-Means and hierarchical
algorithms, are designed to use prior knowledge on the number of
clusters. In k-Means, an iterative process reallocates data items to
the clusters of a k-class partition in order to minimize the within-
cluster variance. Hierarchical clustering adopts a greedy strategy
constructing trees/dendrograms based on the similarity between
data items; each level in these dendrograms corresponds to
partitions with a specific number of clusters and the method offers
no guidance regarding the level where the optimal partition is
represented (hence, the optimal number of clusters).

The algorithms mentioned above are local optimizers. In order
to design a global optimizer for the clustering problem, a criterion
for ranking all partitions, irrespective of the number of clusters, is
needed. The problem is far for being trivial: with no hint on the
number of clusters, common-sense clustering criteria like mini-
mizing the variance within clusters and/or maximizing the dis-
tance between clusters guide the search towards the extreme
solution—the n-class partition with each class containing exactly
one point.

Existing studies in the literature propose and experiment with
various clustering criteria [3,22,24,13]. The main concern is the bias
these criteria introduce towards either lower or higher numbers of
clusters. Since this bias proved to be hard to eliminate, multi-
objective algorithms were proposed [9], which evaluate the quality
of a partition against several criteria. The main drawback remains
the fact that identifying the optimal solution within the final Pareto
front is not straightforward.

The clustering criterion used in the present work originates in
the analogy with the Huygens’ theorem from mechanics, analogy
introduced in [6] and used further in [19]. Considering the data set S

in the above definitions, the following notations are used:
W ¼

Pk
i ¼ 1

P
dACi

dðci,dÞ is the within-cluster inertia computed
as the sum of the distances between all data items d in cluster Ci and
their cluster center ci;

B¼
Pk

i ¼ 1 jCij � dðci,gÞ is the between-cluster inertia computed as
the sum of the distances between the cluster centers ci and the center
of the entire data set g weighted with the size of each cluster jCij.

T ¼
Pn

i ¼ 1 dðdi,gÞ is the total inertia of the data set computed as
the sum of the distances between the data items and the center g of
the data set.

In the above center is the gravity center.
The above-mentioned analogy with mechanics can only be

applied as an approximation. The simplest approximation of the
Huygens theorem is then

WþB� T

According to the above formula, for any partition of the data set,
regardless the number of clusters, the sum W+B is merely constant.
Fig. 1 illustrates this for the case of a data set with 10 random
Gaussian features/variables: W, B, and W+B are computed for
locally optimal partitions of the data set obtained by the k-Means
algorithm with the number of clusters varying between 2 and 50.

In view of the Huygens theorem, if the number of clusters is
fixed, minimizing W or maximizing B are equivalent clustering
criteria which can be used in general heuristics [6]. Note that the
within-cluster variance is a widely used clustering criterion in
supervised clustering. The Huygens theorem provides an equiva-
lent clustering criterion (namely B), at a lower computational cost,
which can be used in a nearest-neighbor assignment scenario [19].

When the number of clusters is unknown both these criteria are
useless: they direct the search towards the extreme n-class
partition. However, a corollary of the Huygens theorem in con-
junction with penalties against the increase of the number
of clusters proved to work in unsupervised clustering: (B/T)k is
used in [21]; an equivalent (in view of the Huygens’ theorem)
function (1/(1+W/B))k is used in [20] in order to use local
Mahalanobis distances. Unfortunately, extensive experiments we
conducted recently with these fitness functions, showed that they

0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20 25 30 35 40 45 50

W B W+B

Fig. 1. The within-cluster inertia W, between-cluster inertia B and their sum plotted

for locally optimal partitions obtained with k-Means over different numbers of

clusters.
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