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a b s t r a c t

The k-means algorithm and its variations are known to be fast clustering algorithms. However, they are

sensitive to the choice of starting points and are inefficient for solving clustering problems in large

datasets. Recently, incremental approaches have been developed to resolve difficulties with the choice of

starting points. The global k-means and the modified global k-means algorithms are based on such an

approach. They iteratively add one cluster center at a time. Numerical experiments show that these

algorithms considerably improve the k-means algorithm. However, they require storing the whole

affinity matrix or computing this matrix at each iteration. This makes both algorithms time consuming

and memory demanding for clustering even moderately large datasets. In this paper, a new version of the

modified global k-means algorithm is proposed. We introduce an auxiliary cluster function to generate a

set of starting points lying in different parts of the dataset. We exploit information gathered in previous

iterations of the incremental algorithm to eliminate the need of computing or storing the whole affinity

matrix and thereby to reduce computational effort and memory usage. Results of numerical experiments

on six standard datasets demonstrate that the new algorithm is more efficient than the global and the

modified global k-means algorithms.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Cluster analysis, also known as unsupervised data classification,
is an important subject in data mining. Its aim is to partition a
collection of patterns into clusters of similar data points. There are
different types of clustering and in this paper we consider the
unconstrained hard clustering problem. The k-means algorithm
and its variations are known to be fast algorithms for solving such
problems. However, they are sensitive to the choice of starting
points and can only be applied to small datasets.

One common way of avoiding this problem is to use the multi
restarting k-means algorithm. However, as the size of the dataset
and the number of clusters increase, more and more starting points
are needed to get a near global solution to the clustering problem.
Consequently the multi restarting k-means algorithm becomes
very time consuming and inefficient for solving clustering pro-
blems, even in moderately large datasets [1].

Different approaches to improve the efficiency of the k-means
algorithm have been proposed, of which incremental ones are
among the most successful. In these approaches clusters are
computed incrementally by solving all intermediate clustering
problems [1–4]. The global k-means algorithm proposed in [4]
and the modified global k-means algorithm proposed in [1,5] are

incremental clustering algorithms. Results of numerical experi-
ments presented in [1] show that these algorithms allow one to find
global or a near global minimizer of the cluster (or error) function.
However, these algorithms are memory demanding as they require
the storage of the affinity matrix. Alternatively, this matrix can be
computed at each iteration, however, this extends the computa-
tional time significantly.

In this paper, a new version of the modified global k-means
algorithm is proposed. We apply an auxiliary cluster function,
introduced in [1], to generate a set of starting points lying in
different parts of the dataset. The k-means algorithm is applied
starting from these points to minimize the auxiliary cluster
function and the best solution is selected as a starting point for
the next cluster center. We exploit information gathered in
previous iterations of the incremental algorithm to avoid comput-
ing the whole affinity matrix. Also the triangle inequality for
distances is used to avoid unnecessary computations. We present
results of numerical experiments on six standard datasets. These
results demonstrate that the proposed algorithm is far more
efficient than the global and modified global k-means algorithms.

The proposed algorithm is applicable to datasets with only
numeric attributes. Clustering algorithms for categorical datasets
can be found, for example, in [6].

It should be noted that in [7] the authors propose a fast version
of the modified global k-means algorithm. However, their aim is to
reduce computational complexity, whereas the purpose of this
paper is to reduce memory usage. Indeed, the algorithm proposed
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in [7] still requires computing part of the affinity matrix, which we
specifically avoid.

The rest of the paper is organized as follows. We give a brief
overview of incremental clustering algorithms in Section 2. In Section
3, the modified global k-means algorithm is described. An algorithm
for solving the auxiliary problem is discussed in Section 4. Section 5
presents approaches to reduce computational effort. The numerical
results are given in Section 6. Section 7 concludes the paper.

2. Brief overview of incremental algorithms for clustering

Incremental approaches are becoming very popular in data
mining in general and in cluster analysis in particular. The paper [8]
is one of the first introducing the incremental algorithm COBWEB
for conceptual clustering.

The existing incremental algorithms in cluster analysis can be
divided, without any loss of generality, into the following classes:

1. Algorithms where new data points are added at each iteration
and cluster centers are refined accordingly. Such algorithms are
called single pass incremental algorithms;

2. Algorithms where clusters are built incrementally adding one
cluster center at a time.

Single pass incremental algorithms are applicable to very large
datasets. In recent years, there has been a dramatic growth of
interest in developing such algorithms for massive datasets. In
particular, clustering in the streamed datasets has received a lot of
attention. Here, an algorithm must process its input by making one
or a few passes over it, using a limited amount of memory. This is a
common model when the size of the input data far exceeds the size
of the memory available. Over last several years various approaches
to design single pass algorithms have been proposed (see, for
example, [9–12]).

The algorithms discussed in this paper belong to the second class.
Unlike those from the first class, algorithms from this class compute
clusters incrementally using the whole dataset and the number of
passes is not restricted. These algorithms are not directly applicable
to solve clustering problems in massive datasets. In order to solve k-
partition clustering problem these algorithms start from one cluster
center (centroid of the dataset) and compute cluster centers
incrementally adding a new center at each iteration. The algorithms
are capable of finding either global or near global solutions to
clustering problems in many datasets. Only these solutions provide
best cluster structure of the dataset. Different incremental algo-
rithms have been proposed in [1–4]. Although these algorithms are
robust and accurate they are time consuming as the computation of
the affinity matrix is required at each iteration. The modified global
k-means algorithm proposed in [1,5] is an incremental clustering
algorithm. Results presented in these papers demonstrate that it can
find better solutions than other incremental algorithms in many
datasets. However, this algorithm uses significantly more computa-
tional effort than other incremental algorithms.

In this paper, we propose a new version of the modified global
k-means algorithm. In this version we reduce the amount of
computational effort by:

1. removing data points which are close to cluster centers found in
the previous iteration. Thus we use the whole dataset only at the
first iteration when we compute the centroid of the dataset;

2. using the triangle inequality for distances to avoid unnecessary
computations.

We also introduce a scheme to generate starting points from
different parts of the dataset to minimize the auxiliary function.

It should be noted that several approaches have been proposed
to accelerate the k-means algorithm. Among them, the authors in
[13] propose to collect information on the data in a tree so that
nearby points are in the same subtree. In [14–16], authors use the
triangle inequality for distances to avoid unnecessary calculations
by reusing information collected in previous iterations of the
k-means algorithm. The paper [7] propose the new version of
the global k-means algorithm which is applicable to large datasets
and uses the cluster membership and geometrical information of a
data point. We use a similar approach, but we also reuse informa-
tion collected while solving the problem with fewer centers. This
allows us to solve simpler and simpler problems as we increment
the number of clusters, by relying on the fact that adding clusters
brings more structure to the result.

3. Modified global k-means algorithm

In this section we briefly describe the modified global k-means
algorithm. The detailed description of this algorithm can be found
in [1].

In cluster analysis we assume that we have been given a finite
set of points A in the n-dimensional space Rn, that is

A¼ fa1, . . . ,amg where aiARn, i¼ 1, . . . ,m:

We consider the hard unconstrained partition clustering problem,
that is the distribution of the points of the set A into a given number
k of disjoint subsets Aj, j¼1,y,k with respect to predefined criteria
such that

(1) Aja|, j¼ 1, . . . ,k;
(2) Aj \ Al ¼ |, j,l¼ 1, . . . ,k, ja l;
(3) A¼

Sk
j ¼ 1 Aj;

(4) no constraints are imposed on the clusters Aj, j¼1,y,k.

The sets Aj,j¼ 1, . . . ,k are called clusters. We assume that each
cluster Aj can be identified by its center (or centroid)
xjARn,j¼ 1, . . . ,k. There are different reformulations of the clus-
tering problem as an optimization problem. A nonsmooth, non-
convex optimization formulation is as follows (see [17–19]):

minimize fkðxÞ subject to x¼ ðx1, . . . ,xkÞARn�k, ð1Þ

where

fkðx
1, . . . ,xkÞ ¼

1

m

Xm
i ¼ 1

min
j ¼ 1,...,k

Jxj�aiJ2: ð2Þ

Here J � J is the Euclidean norm. In this case the problem (1) is also
known as the minimum sum-of-squares clustering problem. Many
algorithms have been developed to solve problem (1) (see, for
example, [20–32]). Over the last several years different incremental
algorithms have been also proposed to solve it (see [1–4]).

The modified global k-means algorithm, introduced in [1], is an
incremental clustering algorithm. To solve k-partition problem,
this algorithm starts with the computation of one cluster center,
that is with the computation of the centroid of the dataset, and
attempts to optimally add one new cluster center at each iteration.
The k-partition problem is solved using the k�1 centers for the
(k�1)-partition problem and the remaining k-th center is placed in
an appropriate place. An auxiliary cluster function is defined using
k�1 cluster centers from the (k�1)-th iteration and is minimized
to compute the starting point for the k-th center. Then this new
center together with previous k�1 cluster centers is taken as a
starting point for the k-partition problem. The k-means algorithm is
applied starting from this point to find the k-partition of the
dataset. Such an approach allows one to find a global or a near
global solution to problem (1).
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