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a b s t r a c t

Local Binary Pattern (LBP) has shown its power in texture classification and face recognition. However, the LBP
operator is performed in the original image space, and it lacks deeper pixel interactions to capture a richer
description. In this paper, we propose to explore space–frequency co-occurrences via local quantized patterns
for texture representation. The proposed method proceeds in two channels. In each channel, the multi-
resolution spatial maps are first obtained by specific spatial filtering, and local frequency features (spectral
maps) are subsequently extracted by applying the local Fourier transform to the spatial map. Two types of
quantization via global thresholding are employed to quantize the spatial and spectral maps into three and
two levels, respectively. The quantized patterns are then jointly encoded to construct a space–frequency co-
occurrence histogram. Finally, the two-channel histograms are combined to characterize the texture. Without
resort to the texton-based representation, our method directly encodes the joint information in the space and
frequency domains while preserving the robustness to image rotation, illumination, scale and viewpoint
changes. Extensive experiments have been conducted on three well-known texture databases, and our
method achieves the best classification results compared with state-of-the-art approaches investigated.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Image features play an important role in various computer
vision tasks such as image matching [1], texture retrieval [2] and
visual classification [3]. In the real world, images usually possess a
variety of appearance changes such as rotation, scale and illumi-
nation variations due to different imaging conditions. Moreover,
different classes of images often have very similar appearances.
Therefore, designing an effective image representation that is
robust for intra-class changes and discriminative for inter-class
variations is a fundamental problem in many practical applica-
tions. In this paper, we focus on constructing an effective image
representation for texture classification task.

Texture images have been widely studied in the past decades.
Many approaches have been proposed for texture analysis includ-
ing statistical, model-based and signal processing methods, such
as co-occurrence matrices [4], Markov random fields [5], hidden
Markov model [6] and image filtering [7]. Among these methods,
Local Binary Pattern (LBP) [3] and texton-based methods [8–11]
may be the most popular ones. The basic idea of LBP is to explore
the local difference co-occurrences to extract pixel-wise feature.
Due to its computational simplicity and invariance to illumination

and rotation changes, LBP has received a lot of attention in tex-
ture classification [3] and face recognition [12]. The texton-based
methods employ a texton dictionary learned from a set of filter
responses (e.g., VZ_MR8 [9]) or from original image patches (e.g.,
VZ_Joint [10] and RP [11]) to summarize a texture. These methods
are data-dependent owing to the texton dictionary learning, and
they need intensive nearest-neighbor computation to encode each
local image feature. Bypassing the texton-based representation,
Weber Local Descriptor (WLD) [13] and Basic Image Features (BIFs)
[14] were recently developed. The former is inspired by Weber's
law, which constructs a 2-D histogram by encoding the differential
excitations and orientations at certain pixel positions. The latter
offers a natural quantization of filter responses into several distinct
types of local image structure. It was reported that BIFs achieved
the best classification performance on the KTH-TIPS database [15].

Motivated by LBP, a lot of variants have been recently proposed to
encode local micro-structure information. Regarding local neighbor
patterns, a diversity of geometric structures or topological patterns (e.
g., the ellipse, disk, ring) were designed and evaluated in [16–19]. As
for the encoded features, the high-order derivative direction informa-
tion was explored both in Local Directional Pattern (LDP) [20] and
Local Tetra Patterns (LTrPs) [21], while Gabor and monogenic features
were exploited in [22–24] for face recognition. However, these
methods either involve costly Gabor filtering, or were originally
devised for face recognition in constrained environments. They are
not suitable for texture classification under the uncontrolled imaging
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conditions (such as rotation). Recently, the rotation invariant binary
Gabor patterns (BGP) [25] were proposed for texture classification,
which explore even- and odd-symmetric Gabor filters and the
binarization operator to encode texture features. Following the line
of patch-like features, average gray-values of blocks [26], self-
similarity distances [27] and gradient magnitudes [28] were utilized
for difference coding. To be robust to noise, Local Ternary Pattern (LTP)
[29] quantizes the local difference into three levels and performs the
split ternary coding on the quantized sequence. The self-adaptive
quantization thresholds coupled with the N-nary coding were
employed in Local Energy Pattern (LEP) [30] for material and dynamic
texture classification. Completed LBP (CLBP) [31] was presented by
decomposing the local difference into sign and magnitude compo-
nents, and they are jointly encoded with the center pixel. In [32], Local
Binary Count (LBC) was defined by only counting the 1's in the binary
sequence. Dominant LBP (DLBP) [33] and Dominant Neighborhood
Structure (DNS) [34] were, respectively, developed to combine local
and global features to improve classification performance. Similar to
LBP, circular neighborhoods centered at every pixel were considered in
[35–39] to extract rotation invariant frequency features using the
Fourier transform. Another recent trend is to extend LBP from 2-D
plane to 3-D volume and from grayscale space to color space, such as
Volume LBP (VLBP) [40], Uniform Spherical Region Descriptor (USRD)
[41], Gabor Volume based LBP (GV-LBP) [42], Color LBP (CLBP) [43]
and Local Color Vector Binary Patterns (LCVBP) [44]. A comprehensive
study of LBP and its applications can be found in [45].

Despite its popularity, the basic LBP operator is performed in the
original image space and it lacks deeper pixel interactions in different
feature domains. In this paper, we propose to explore space–frequency
co-occurrences via local quantized patterns for texture representation.
The main contributions of this work include the following:

� Two-channel space–frequency feature spaces are designed to
obtain locally invariant multi-resolution features.

� Two types of quantization via global thresholding are devel-
oped to partition the feature spaces. Our coarse quantization
has three advantages: (i) it leads to the stable space partition;
(ii) it enables the compact feature representation; (iii) it byp-
asses the texton-dictionary learning and involves no costly
nearest-neighbor computation.

� The joint space–frequency coding is explored. Not only does this
operator provide a richer and more discriminative description, but it
also offsets the information loss caused by our coarse quantization.

With carefully designed space and frequency features, our method
is robust to image rotation, illumination, scale and viewpoint
changes. Combining the complementary space–frequency features
in two channels, the discriminative power of our method is further
enhanced. Therefore, our feature representation is expected to
obtain good classification results.

The rest of the paper is structured as follows: Section 2 briefly
reviews the principle of LBP and its recent variants. Section 3
elaborates our proposed method. Section 4 reports and analyzes the
comparison results of our method against the state of the art, and
Section 5 concludes this paper. A preliminary version of this work has
appeared in [46].

2. LBP and its recent variants

2.1. Local Binary Pattern (LBP)

For a given pixel in an image, the LBP label [3] is defined as

LBPP;R ¼
XP�1

p ¼ 0

sðgp�gcÞ2p; sðxÞ ¼
1; xZ0
0; xo0

(
ð1Þ

where gc and gp denote the intensity values of the center pixel and
its sampling neighbors, respectively, P is the numbers of neigh-
bors, and R is the sampling radius. Note that for sampling
neighbors that fall out of the integer coordinates, their corre-
sponding gray values can be obtained by bilinear interpolation.

The rotation invariant LBP [3] is obtained by

LBPriP;R ¼minfRORðLBPP;R; iÞji¼ 0;1;…; P�1g ð2Þ

where RORðz; iÞ denotes the circular bit-wise shifting on the P-bit
number z i times.

The uniform patterns [3] are further extensions of the original
LBP operator. They were developed based on the empirical
observation that uniform patterns can occupy over 90% among
all the LBP patterns. A uniformity measure is defined by

UðLBPP;RÞ ¼ j sðgp�1�gcÞ�sðg0�gcÞj

þ
XP�1

p ¼ 1

j sðgp�gcÞ�sðgP�1�gcÞj ð3Þ

The patterns that have U value of at most 2 are designated as
“uniform”, i.e., patterns with at most one 0–1 (or 1–0) transition
in a circular bit string. The rotation invariant uniform LBP is
defined as

LBPriu2P;R ¼
XP�1

p ¼ 0

sðgp�gcÞ; UðLBPP;RÞr2

Pþ1 otherwise

8>><
>>: ð4Þ

The texture is finally represented as a histogram accumulated by
the pattern labels of LBPriu2P;R . That is, each rotation invariant uniform
pattern has one separate histogram bin and all non-uniform
patterns share a single bin. The resulting histogram has K ¼ Pþ2
bins. Formally, for an image of size W� H, the histogram is
calculated as follows:

HðkÞ ¼
XW
i ¼ 1

XH
j ¼ 1

δðLBPriu2P;R ði; jÞ ¼ ¼ kÞ ð5Þ

where kAf0;…;K�1g, K is the number of pattern labels, and

δðzÞ ¼ 1 if z is true
0 otherwise

�
ð6Þ

The multi-resolution LBP [3] representation can be achieved by
combining multiple LBP operators via varying ðP;RÞ. In our work,
we set P¼8 when R¼1; P¼16 when R¼2; and P¼24 when R¼3.

2.2. Completed LBP (CLBP) and Local Binary Count (LBC)

CLBP [31] was proposed to improve the discrimination power
of LBP. As illustrated in Fig. 1, CLBP decomposes the local gray-level
differences into two complementary components, i.e., the signs
and the magnitudes. Accordingly, two operators, i.e., CLBP-Sign
(CLBP_S) and CLBP-Magnitude (CLBP_M), are defined to encode
the signs and magnitudes, respectively. The former is equivalent to
the original LBP operator in (1), and the latter is defined as

CLBP_MP;R ¼
XP�1

p ¼ 0

tðmp; cÞ2p; tðx; cÞ ¼
1; xZc

0; xoc

(
ð7Þ

where mp is the magnitude of the difference between gp and gc,
and c is set as the mean value of mp from the whole image.
Additionally, the center pixel is also encoded by the operator CLBP-
Center (CLBP_C) as follows:

CLBP_CP;R ¼ tðgc; cIÞ ð8Þ
where cI is the mean intensity values of pixels from the
whole image.
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