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a b s t r a c t

In linear discriminant analysis, the assumption of equality of the dispersion matrices of different classes
leads to a classification rule based on minimum Mahalanobis distance from the class centres. However,
without this assumption, the resulting quadratic discriminant classifier involves, in addition to the
Mahalanobis distances, the ratio of the determinants of the dispersion matrices as a factor. In fact, it has
been observed that, for discriminating between populations with underlying elliptically symmetric
distributions, such classifiers also incorporate similar factors, apart from the Mahalanobis distances.

In this paper, a nonparametric classification technique which generalizes discriminant analysis has
been proposed. The method of cross-validation is used to make the technique adaptive to a given
dataset. An extensive simulation study is presented to illustrate the potential of the method. Finally,
through implementation on a number of real-life data sets, it has been demonstrated that the proposed
generalized quadratic discriminant analysis (GQDA) compares very favourably with other nonparametric
methods, and is computationally cost-effective.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In traditional linear discriminant analysis, the class-conditional
probability densities are assumed to be multivariate normal
distributions having different mean vectors for different classes.
The assumption that the dispersion matrices are identical for all
classes leads to linear discriminant analysis (LDA). The resulting
classification rule assigns an observation to the class for which the
Mahalanobis distance between the observation and the class mean
is minimum. This classification rule will henceforth be referred to
as the minimum Mahalanobis distance (MMD) classification rule.
When it is not possible to assume the class dispersion matrices to
be equal, the result is quadratic discriminant analysis (QDA). The
classification rule under QDA is quite different from the MMD rule
as it also involves a factor based on the ratio of the determinants of
the dispersion matrices. Anderson [1] provides an excellent
introduction to discriminant analysis.

Despite being a popular choice for classification, QDA does not
perform very well when the class-conditional probability densities
are very different from the normal distribution. In several such
situations, the MMD classification rule, which is purely a nonpara-
metric method, produces better results.

In spite of this, discriminant analysis, linear as well as quad-
ratic, has generally proved to be highly effective in providing
solutions to a variety of classification problems. As such, it has not
only been very popular with researchers, it has also been a
significant area of research. A lot of recent research in the area
has been directed towards making these methods more effective
in situations where they fail or are less effective. One such
situation arises when the number of random variables is much
larger than the number of observations available on them, as is
very often the case with many modern-day real-life problems. In
such situations, sample estimates of the class dispersion matrices
may be unstable and even singular. Numerous methodologies
based on discriminant analysis which are tailor-made for dealing
with such situations have been published. These include vertex
discriminant analysis (VDA) of Wu and Lange [24]; sparse dis-
criminant analysis based on the optimal scoring interpretation of
linear discriminant analysis, proposed by Clemmensen et al. [6];
discriminant analysis constructed via lasso penalized least squares,
by Mai et al. [15]; the regularized optimal affine discriminant
(ROAD) of Fan et al. [8]; shrinkage-based and regularization
diagonal discriminant methods proposed by Pang et al. [17]; a
thresholding-based approach reported by Shao et al. [20]; pena-
lized methods proposed, for example, by Hastie et al. [12] as well
as Witten and Tibshirani [23], and a kernel QDA method proposed
by Wang et al. [22]. Other modifications include the approach of
Suzuki and Itoh [21] which focuses on reducing the processing
time involved, and the linear boundary discriminant analysis
proposed by Na et al. [16], which aims to improve accuracy
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through increase in class separability by reflecting the different
significances of non-boundary and boundary patterns. For the
same class of problems, Zhu and Martinez [26] proposed a
variation of discriminant analysis, called subclass discriminant
analysis (SDA), by approximating the underlying distribution of
each class with a mixture of Gaussians. Gkalelis et al. [11]
established a theoretical link between mixture subclass discrimi-
nant analysis (MSDA) [10] and a restricted Gaussian model and
hence proposed two generalizations, namely, fractional step MSDA
(FSMSDA) and kernel MSDA (KMSDA).

Other approaches that have been proposed for tackling high-
dimensional, small-sample classification problems, include null
space LDA (NLDA) by Chen et al. [5], orthogonal LDA (OLDA) and
uncorrelated LDA (ULDA) by Ye [25], subspace LDA [3], regularized
LDA [9], and pseudo-inverse LDA [19]. Null space LDA computes
the discriminant vectors in the null space of the within-class
scatter matrix, while uncorrelated LDA and orthogonal LDA belong
to a family of algorithms for generalized discriminant analysis
proposed by Ye [25]. The features in ULDA are uncorrelated, while
the discriminant vectors in OLDA are orthogonal to each other.
Subspace LDA (or PCAþLDA) incorporates an intermediate dimen-
sionality reduction stage such as PCA to reduce the dimensionality
of the original data before classical LDA is applied. Regularized LDA
uses a scaled multiple of the identity matrix to make the scatter
matrix nonsingular. Pseudo-inverse LDA employs the pseudo-
inverse to overcome the singularity problem. More details on
these methods, as well as their relationship, can be found in [25].

Most of the above approaches deal with the limitations of
discriminant analysis in high-dimensional, small-sample problems
(also referred to as small-n, large-p problems, where n is the
sample size and p is the dimension of the random vector involved).
Unlike these, this paper proposes a novel generalization of the
QDA in the conventional framework (large n, small p) to make it
more appropriate for the situations when the class-conditional
probability densities may not be normal but may have an ellipti-
cally symmetric nature. However, this generalization is totally
nonparametric and QDA and MMD are its two special cases.
Further, the method can be made adaptive to a given data which
makes it very flexible. The effectiveness of the proposed method
has been illustrated through extensive experimentation, and its
performance has been found to compare very favourably with
some well-known powerful nonparametric classifiers in a variety
of examples.

The organization of this paper is as follows: In Section 2 the
proposed classification scheme, which generalizes the QDA and
MMD classifiers, is presented for two-class problems. General-
ization of the method to the multi-class (more than two classes)
case is discussed in Section 3. Simulation studies for two class as
well as multi-class problems are presented in Section 4. The
proposed classification scheme is illustrated with some experi-
mental data sets for both two-class and multi-class cases in
Section 5, which also contains a comparison of performance of
the proposed method with that of MMD, QDA and some standard
multivariate classifiers over a variety of experimental datasets.
Finally, concluding remarks and some suggested directions for
further research are given in Section 6.

2. Two-class classification

In classification problems, the objective is to classify a given
observation x on a p-variate random vector X into one of m
competing populations by a decision rule dðxÞ : Rd-f1;2;…;mg.
This rule is constructed with the help of a set of n observations on
X, called the training set, in which all the m populations are
represented. The optimal classification rule, namely, the Bayes rule

(see [1,7], for example) assumes that, for j¼ 1;2;…;m, the random
vector X has a probability distribution function f jðxÞ in population
j, and that the a priori probability for an observation to arise out of
population j is πj, where

Pm
i ¼ 1 πi ¼ 1. Based on these, it assigns an

observation x to the class with the largest a posteriori probability
πðj∣xÞ ¼ πjf jðxÞ=K , where K ¼ Pm

i ¼ 1 πif iðxÞ.
In particular, when m¼2, that is, in a two-class classification

problem, an observation x¼ ðx1;…; xpÞ0 on a random measurement
vector X is taken for a single individual (or object) and, on the
basis of x, the individual (or object) is classified into one of the two
classes, say, C1 and C2, in which X is assumed to have probability
density functions f 1ðxÞ and f 2ðxÞ respectively. The classification
rule essentially partitions the measurement space X into R1 and R2
such that if xAR1 the individual (or object) is classified into C1, and
is classified into C2 otherwise. If the prior probabilities π1 and
π2 ¼ 1�π1 are assumed to be equal for the two classes then, for
the optimal Bayes rule, we have

R1 ¼ x :
f 1ðxÞ
f 2ðxÞ

Z1
� �

¼ x : log
f 1ðxÞ
f 2ðxÞ

Z0
� �

;

R2 ¼ x :
f 1ðxÞ
f 2ðxÞ

o1
� �

¼ x : log
f 1ðxÞ
f 2ðxÞ

o0
� �

:

If f 1ðxÞ and f 2ðxÞ are multivariate normal densities with mean
vectors μ1, μ2 and dispersion matrices Σ1 and Σ2 respectively, we
have

log
f 1ðxÞ
f 2ðxÞ

¼ 1
2
log

jΣ2 j
jΣ1 j

� �
þ1
2
½ðx�μ2Þ0Σ�1

2 ðx�μ2Þ�ðx�μ1Þ0Σ�1
1 ðx�μ1Þ�

¼ 1
2
log

Σ2j j
Σ1j j

� �
þ1
2
Δ2
d say; ð2:1Þ

where

Δ2
d ¼ ðx�μ2Þ0Σ�1

2 ðx�μ2Þ�ðx�μ1Þ0Σ�1
1 ðx�μ1Þ;

which is nothing but the difference of the squared Mahalanobis
distances of x from the two classes C1 and C2. This leads to the QDA
rule, for which

R1 ¼ x :
1
2
log

Σ2j j
Σ1j j

� �
þ1
2
Δ2
d40

� �

¼ x : Δ2
d4 log

Σ1j j
Σ2j j

� �� �
: ð2:2Þ

Note that when Σ1 is assumed to be equal to Σ2, this reduces
simply to R1 ¼ x : Δ2

d40
� �

, which is identical to the MMD. How-
ever, MMD fails when this assumption is not true and QDA will be
optimal in that case. On the other hand, if the class-conditional
probability densities are not normal, it is possible that MMD might
be a better choice compared to QDA. For example, simulation with
the Cauchy distribution (with appropriate location and scale
parameters) will show that QDA fails miserably while MMD
performs relatively better. These results are presented in Table 3,
in which the columns corresponding to c¼0 and c¼1 respectively
contain results obtained with MMD and QDA.

Now, if f iðxÞ is assumed to be p-variate t-distribution having q
degrees of freedom (d.f.), for i¼1,2, that is, if

f iðxÞ ¼ AjΣi j �1=2 1þ1
q
ðx�μiÞ0Σ�1

i ðx�μiÞ
� 	�ðpþqÞ=2

; i¼ 1;2;

where

A¼
Γ

pþq
2


 �
Γ

q
2


 � qp=2πp=2;
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