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a b s t r a c t

The Robust Graph mode seeking by Graph Shift (Liu and Yan, 2010) (RGGS) algorithm represents a recent
promising approach for discovering dense subgraphs in noisy data. However, there are no theoretical
foundations for proving the convergence of the RGGS algorithm, leaving the question as to whether an
algorithm works for solid reasons. In this paper, we propose a generic theoretical framework consisting
of three key Graph Shift (GS) components: the simplex of a generated sequence set, the monotonic and
continuous objective function and closed mapping. We prove that the GS-type algorithms built on such
components can be transformed to fit Zangwill's theory, and the sequence set generated by the GS
procedures always terminates at a local maximum, or at worst, contains a subsequence which converges
to a local maximum of the similarity measure function. The framework is verified by theoretical analysis
and experimental results of several typical GS-type algorithms.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The Robust Graph mode seeking by Graph Shift (RGGS) algo-
rithm [1–7] is a newly proposed algorithm in seeking dense
subgraphs (also known as graph mode) and has received much
attention in the machine learning and data mining areas. Due to its
tremendous advantages in removing the noisy data in learning
dense subgraphs, it is popularly used for image processing such as
common pattern matching [7,2], computer vision such as object
tracking [3–6], and cluster analysis [1]. In addition, its low
computational and memory complexity requirements make it
feasible for handling real applications, especially for large-scale
data. However, little work has been done to build the theoretical
foundation for the RGGS algorithm. This leaves important ques-
tions about why such algorithms work and whether there is any
underpinning foundation to ensure the empirical demonstrations
work well for any situations.

The RGGS algorithm originated from the Dominant Sets and
Pairwise Clustering (DSPC) algorithm [8,9], which treats the dense
subgraphs discovery problem as a constrained optimization pro-
blem and gives a clear definition of the so-called “dominant set”,
i.e., dense subgraphs. Further, by modifying the existing DSPC
(known as Replicator Dynamics in the RGGS algorithm) procedure,
the RGGS algorithm adds a “Neighborhood Expansion” procedure
to reinforce the learning results. By iteratively employing the DSPC
procedure and the newly added Neighborhood Expansion

procedure, the RGGS algorithm claims to find a local maximum
of the constraint objective function after a finite number of
iterations and further, empirically demonstrates the claim.

However, to the best of our knowledge, none of the existing
arguments were built on a solid theoretical foundation with a proper
justification of the objective functions’ behavior during the proce-
dures and the stopping criteria. All of the above issues are closely
related to one thing: the convergence property of the RGGS algo-
rithm. That is to say, we need to ensure that the generated sequence
set is convergent or at least contains a convergent subsequence set. It
is certainly crucial to have a theoretical analysis of the convergence
behavior of the RGGS algorithm before we can confidently utilize it.

Building a proper convergence theorem for the respective
learning algorithms is a very important theoretical issue in bui-
lding solid learning theories. While this is often very challenging,
several of existing learning theories include such a component,
including the convergence theorem for algorithms with an itera-
tive sequence set. The convergence proof for the fuzzy c-means
algorithm (FCM) was provided by Bedzek [10,11], who employed
Zangwill's theory [12,13] to establish the sequence's convergence
property. Hoppner and Klawonn [14] proved the convergence of
the axis-parallel variant of Gustafson–Kessel's algorithm [15] by
applying Banach's classical contraction principle [16], which is the
general case of FCM. Groll and Jakel [17] used the equivalence
between the original and reduced FCM criteria, and conducted a
new and more direct derivation of the convergence properties of
FCM algorithms. In addition, Selim and Ismail [18] treated the k-
means clustering problem as a nonconvex mathematical program
and provided a rigorous proof of the finite convergence of the K-
means-type algorithms.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/pr

Pattern Recognition

http://dx.doi.org/10.1016/j.patcog.2015.02.013
0031-3203/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: xhfan.ml@gmail.com (X. Fan),

longbing.cao@uts.edu.au (L. Cao).

Pattern Recognition 48 (2015) 2751–2760

www.sciencedirect.com/science/journal/00313203
www.elsevier.com/locate/pr
http://dx.doi.org/10.1016/j.patcog.2015.02.013
http://dx.doi.org/10.1016/j.patcog.2015.02.013
http://dx.doi.org/10.1016/j.patcog.2015.02.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2015.02.013&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2015.02.013&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2015.02.013&domain=pdf
mailto:xhfan.ml@gmail.com
mailto:longbing.cao@uts.edu.au
http://dx.doi.org/10.1016/j.patcog.2015.02.013


The FCM's convergence theory seems complete and this
inspires the possibility of it being applied to other purposes, e.g.
the RGGS algorithm with an iterative set. Unfortunately, it is not
easy to capture the RGGS algorithm's complex characteristics in
the convergence proof. To address this problem, we provide a
theoretical analysis of the RGGS algorithm. We start with an
understanding of the principal characteristics of the RGGS algo-
rithm by breaking it down into three key components, the
generated sequence set, the objective function and mapping, and
then propose a framework to map such components to the
conditions required in Zangwill's theory. We find that the mapped
RGGS algorithm can then perfectly match with the key require-
ments in Zangwill's theory. The convergence theorem for the RGGS
algorithm is then developed.

Further, a definition of the so-called “GS-type algorithms” is
then given to provide us with a general framework to fit algo-
rithms with similar properties. More importantly, we build up a
systematic learning process for them by analyzing the objective
functions' behaviors and observing how they arrive at the final
results. We illustrate the proposed convergence theorem in terms
of proving two typical GS-type algorithms: the RGGS algorithm in
[1] and the DSPC algorithm in [9]. The theoretical analysis is then
verified against the experimental results.

In summary, this work makes the following substantial
contributions:

� A theoretical framework is proposed to analyze the conver-
gence behaviors of the RGGS algorithm. This enables the
intrinsic key characteristics embedded in the RGGS algorithm
to be effectively captured.

� Taking the two typical GS-type algorithms as examples, we
prove the RGGS algorithm and the DSPC algorithm either
terminate at a local maximum value or at least contain a
subsequence which converges to a local maximum.

� A convergence proof framework is built to generalize the
proposed theoretical framework to other GS-type algorithms,
namely the RGGS algorithm with similar properties.

The paper is organized as follows. Section 2 introduces the
principle of the RGGS algorithm. In Section 3, we first introduce
Zangwill's theory, and then propose a framework for extracting
three key components in the RGGS algorithm, which are then
mapped to the properties of Zangwill's theory. Section 4 discusses
the convergence and features of the RGGS algorithm. We extend
the convergence proof to other GS-type algorithms and build up a
generic convergence proof framework in Section 5. Experiments
are conducted in Section 6 to verify the convergence theorem and
behaviors. Conclusions and future work can be found in Section 7.

2. Preliminaries

2.1. Rationale of the RGGS algorithm

The basic principle of the RGGS algorithm is set forth in [1].
From the perspective of graph mining, the RGGS algorithm
searches each vertex's dense “nearer” subgraphs with strong
internal closeness. Two procedures: Replicator Dynamics and
Neighborhood Expansion are recursively employed on each vertex
sequentially to reach the goal. The former largely shrinks the
identified subgraphs and the latter expands the existing sub-
graphs, both shifting towards a local graph mode.

In [1,9], a probabilistic coordinate on Graph G is defined as a
mapping: V-Δn, where Δn ¼ fxARn : xiZ0; iAf1;…;ng and
jxj 1 ¼ 1g. The support of xAΔn is the indices of all non-zero
components, denoted as δðxÞ ¼ fijxia0g, corresponding to

subgraphs GδðxÞ, and xi denotes vertex i's occurrence in the sub-
graphs GδðxÞ to some extent.

The algorithm operates on an affinity matrix A¼ aij
� �n�n, in

which aij measures the similarity between vertices i and j. Then,
the internal similarity of subgraphs GδðxÞ is measured as

gðxÞ≔aðx; xÞ ¼
Xn
i;j ¼ 1

aijxixj ¼ xTAx: ð1Þ

Accordingly, a local maximum solver of gðxÞ can be taken to
represent the desired dense subgraphs. The identification of such
local maximum regions is equivalent to solving the following
quadratic optimization problem:

maximize gðxÞ ¼ xTAx
subject to xAΔn

(
ð2Þ

2.2. Mapping definitions

We state here the problem of the RGGS algorithm and propose
the corresponding mapping to form a conceptual understanding of
the RGGS algorithm.

In general, the RGGS algorithm defines a mapping Tm : Δn
-Δn

to obtain the iterative sequence set as

xðkÞ ¼ Tmðxðk�1ÞÞ ¼⋯¼ Tmð ÞðkÞðxð0ÞÞ; k¼ 1;2;⋯: ð3Þ
where xð0Þ is an initial starting point, and superscripts in parenth-
eses correspond to the iteration number. Subsequently, the con-
vergence of the RGGS algorithm is to test whether the iterative
sequence set xðkÞ

� �1
k ¼ 1 generated by Tm converges to a local

maximum solver of the problem in Eq. (2).
The mapping function Tm plays a crucial role in the RGGS

algorithm, combining the Replicator Dynamics procedure ðBmk Þ
and the Neighborhood Expansion procedure ðCÞ. Therefore, in
order to understand and analyze the convergence problem, it is
essential to have a deep understanding of the mapping function.
Accordingly, Tm is broken down as

Tm≔Bmk○C: ð4Þ
In Eq. (4), Bmk represents the kth (krm) Replicator Dynamics
procedure; mk corresponds to the number of transformation B in
the kth Replicator Dynamics procedure when a subgraphs's mode
is reached in this procedure (this result is actually a special case of
Theorem 3). B is the transformation expressed as

B : Δn
-Δn

; xðlkÞ-xðlkþ1Þ
¼ ω1ðlkÞx1ðlkÞPn

i ¼ 1ωiðlkÞxiðlkÞ
;…;

ωnðlkÞxnðlkÞPn
i ¼ 1ωiðlkÞxiðlkÞ

� �
: ð5Þ

In Eq. (5), ωiðlkÞ ¼ AxðlkÞð Þi ¼
Pn

j ¼ 1 aijxjðlkÞ, iAf1;…;ng,
lkAf1;…;mk�1g.

C is the Neighborhood Expansion procedure, denoted as

xðkþ1Þ ¼ xðkÞ þΔx¼ xðkÞ þtnb: ð6Þ
Details of tn and b are explained in Appendix A.

2.3. Detailed procedure and stopping criteria

The RGGS algorithm in [1] is an iterative process for seeking
dense subgraphs which starts from each vertex in the graph. The
pseudo-codes below illustrate the whole process.

Require An�n, the affinity matrix of the whole data set with the
diagonal value 0;
fx¼ xif gi ¼ 1n g; initial starting points, usually taken as
fe¼ eif gi ¼ 1n g

1: for i¼1,…n do
2: do Replicator Dynamics (Eq. (5)) of xi
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