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Abstract

This paper formulates independent component analysis (ICA) in the kernel-inducing feature space and develops a two-phase
kernel ICA algorithm: whitened kernel principal component analysis (KPCA) plus ICA. KPCA spheres data and makes the
data structure become as linearly separable as possible by virtue of an implicit nonlinear mapping determined by kernel. ICA
seeks the projection directions in the KPCA whitened space, making the distribution of the projected data as non-gaussian
as possible. The experiment using a subset of FERET database indicates that the proposed kernel ICA method significantly
outperform ICA, PCA and KPCA in terms of the total recognition rate.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Keywords:Kernel-based methods; Independent component analysis (ICA); Principal component analysis (PCA); Feature extraction; Face
recognition

1. Introduction

Over the last few years, independent component analy-
sis (ICA) has aroused wide research interests and become a
popular tool for blind source separation and feature extrac-
tion. From the feature extraction point of view, ICA has a
close relationship with projection pursuit since both of them
aim to find the directions such that the projections of the
data into those directions have maximally “non-gaussian”
distributions. These projections are interesting and consid-
ered more useful for classification[1]. Bartlett [2] and Liu
[3] applied ICA to face representation and recognition and
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found that it outperforms PCA when cosine distance was
used as the similarity measure.
ICA, however, fails to separate the nonlinearly mixed

source due to its intrinsic linearity. Likewise, for feature
extraction, ICA-based linear projection is incompetent to
represent the data with nonlinear structure. To address this
problem, our idea is to nonlinearly map the data into a
feature space, in which the data has a linear structure (as
linearly separable as possible). Then we perform ICA in
feature space and make the distribution of data as non-
gaussian as possible. We will use “kernel tricks” to solve the
computation of independent projection directions in high-
dimensional feature space and ultimately convert the prob-
lem of performing ICA in feature space into a problem of
implementing ICA in the kernel principal component anal-
ysis (KPCA) transformed space.
It should be mentioned that kernel ICA formulation in

this paper is different from that in[5]. In [5], the kernel trick
is used for computation and optimization of a canonical
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correlation (�-correlation) based contrast function, while
in this paper, “kernel” is introduced to realize an implicit
nonlinear mapping which makes the data linearly structured
in feature space.

2. Kernel ICA

2.1. ICA model in feature space

Given a random vectorx, which is possibly nonlinearly
mixed, we map it into its image in the feature spaceH by
the following nonlinear mapping:

� : Rn → H ,

x �→ �(x). (1)

As a result, a pattern in the original observation space (input
space)Rn is mapped into a potentially much higher dimen-
sional feature vector in thefeature spaceH .
Assume that after the nonlinear mapping, the data have a

linearly separable structure in feature spaceH . Our task is
to find a linear operatorW� in H to recover the indepen-
dent components from�(x) by the following linear trans-
formation:

s=W��(x). (2)

Note that if the feature space is finite-dimensional, the op-
eratorW� is a matrix. Now, the problem is how to deter-
mine the linear transformations= W��(x) in the high-
dimensional (possibly infinite-dimensional) feature space.

2.2. Algorithm

Let us recall the implementation of ICA in observation
space. Before applying an ICA algorithm on the data, it
is usually very useful to do some preprocessing work (e.g.
sphering or whitening data). The preprocessing canmake the
problem of ICA estimation simpler and better conditioned
[1]. Generally, a whitened PCA is used to sphere the data
and make the transformed datay satisfy

E{yyT} = I ,

whereI is an identity matrix. (3)

Similarly, we can perform PCA in feature spaceH for data
whitening. Note thatperforming PCA in feature space can
be equivalently implemented in input space(observation
space) by virtue of kernels, i.e., performing KPCA based on
the observation data. Based on this idea, we will develop a
concise kernel ICA algorithm to implement ICA in feature
space.

2.2.1. Sphering of data using KPCA
Given an observation sequencex1, x2, . . . , xM in Rn, let

us assume their images are centered in feature space, i.e.,∑M
j=1�(xj ) = 0 (This is just for simplicity, we will deal

with the centering problem later). Thecovariance operator
on thefeature spaceH can be constructed by

S�
t = 1

M

M∑
j=1

�(xj )�(xj )T. (4)

In a finite-dimensional feature space, this operator is gen-
erally called covariance matrix. It is not hard to showS�

t

is a positive operator, so non-zero eigenvalues ofS�
t are all

positive. It is these positive eigenvalues that are of interest
to us. Schölkopf et al.[4] has suggested a way to find them.
LetQ= [�(x1), . . . , �(xM)], thenS�

t can be expressed by
S�
t = (1/M)QQT. Let us form the Gram matrixR=QTQ,
which is anM × M matrix and its elements can be deter-
mined by virtue of the given kernel function k(x, y), i.e.,

Rij = �(xi )
T�(xj ) = (�(xi ) · �(xj )) = k(xi , yj ). (5)

Calculate the orthonormal eigenvectors�1, �2, . . . , �m

of R corresponding tom largest positive eigenvalues
�1��2� · · · ��m. Then, them largest positive eigenval-
ues ofS�

t are�1/M, �2/M, . . . , �m/M, and the associated
orthonormal eigenvectors�1, �2, . . . , �m can be expressed
by

�j = 1√
�j

Q�j , j = 1, . . . , m. (6)

DenoteV=(�1, �2, . . . , �m),�=diag(�1, �2, . . . , �m), and
B= (�1, �2, . . . , �m) =QV�−1/2, then

BTS�
t B= diag

(
�1
M

,
�2
M

, . . . ,
�m

M

)
= 1

M
�. (7)

Going one step further, letP=B( 1
M

�)−1/2=√
MQV�−1,

then

PTS�
t P= I . (8)

Thus, we obtain the whitening matrixP. The mapped data
in feature space can be whitened by the following transfor-
mation:

y = PT�(x). (9)

Specifically,

y = √
M�−1VTQT�(x)

= √
M�−1VT[k(x1, x), k(x2, x), . . . , k(xM, x)]T

= √
M�−1VTRx . (10)

Now, let us go back to the problem of centering data. Data
centering in input space is easy, but it is difficult to do
so in feature space because we cannot explicitly compute
the mean of the mapped data inH . Fortunately, a slight
modification of the above process can achieve this.
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