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Abstract

The likelihood for patterns of continuous features needed for probabilistic inference in a Bayesian network classifier

(BNC) may be computed by kernel density estimation (KDE), letting every pattern influence the shape of the probability

density. Although usually leading to accurate estimation, the KDE suffers from computational cost making it unpractical

in many real-world applications. We smooth the density using a spline thus requiring for the estimation only very few

coefficients rather than the whole training set allowing rapid implementation of the BNC without sacrificing classifier

accuracy. Experiments conducted over a several real-world databases reveal acceleration in computational speed, some-

times in several orders of magnitude, in favor of our method making the application of KDE to BNCs practical.
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1. Introduction

1.1. Density estimation for Bayesian network

classifiers

A Bayesian network (BN) represents the joint
probability distribution (density) p(X) over a set

of n domain variables X = {X1, . . . ,Xn} graphically

(Pearl, 1988; Heckerman, 1995). An arc and a lack

of an arc between two nodes in the graph demon-

strate, respectively, dependency and independency

between variables corresponding to these nodes

(Fig. 1). A connection between Xi and its parents
Pai in the graph is quantified probabilistically using

the data. A node having no parents embodies the

prior probability of the corresponding variable.

By ordering the variables topologically, extracting

the general factorization of this ordering (using
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the chain rule of probability) and applying the
directed Markov property, we can decompose the

joint probability distribution (density)

pðXÞ ¼ pðX 1; . . . ;XnÞ ¼
Yn
i¼1

pðX ijPaiÞ: ð1Þ

The naı̈ve Bayesian classifier (NBC) is a BN

used for classification thus belonging to the Bayes-

ian network classifier (BNC) family (John and
Langley, 1995; Heckerman, 1995; Friedman

et al., 1998; Lerner, 2004). It predicts a class C

for a pattern x using Bayes� theorem

P ðCjX ¼ xÞ ¼ pðX ¼ xjCÞ � P ðCÞ
pðX ¼ xÞ ð2Þ

i.e., it infers the posterior probability that x be-

longs to C, P(CjX = x), by updating the prior
probability for that class, P(C), by the class-condi-

tional probability density or likelihood for x to be

generated from this class, p(X = xjC), normalized

by the unconditional density (evidence), p(X = x).

The NBC represents a restrictive assumption of

conditional independence between the variables

(domain features) given the class allowing the

decomposition and computation of the likelihood
employing local probability densities

pðX jCÞ ¼
Yn
i¼1

pðX ijCÞ: ð3Þ

Estimating probability densities of variables

accurately is a crucial task in many areas of

machine learning (Silverman, 1986; Bishop, 1995).

While estimating the probability distribution of a

discrete feature is easily performed by computing

the frequencies of its values in a given database,

the probability density of a continuous feature

taking any value in an interval cannot be estimated
similarly thus requiring other, more complex

methodologies. This is a major difficulty in the

implementation of BNCs (John and Langley,

1995; Friedman et al., 1998; Elgammal et al.,

2003; Lerner, 2004), and it requires either discreti-

zation of the variable into a collection of bins

covering its range (Heckerman, 1995; Friedman

et al., 1998; Yang and Webb, 2002; Malka and
Lerner, 2004) or estimation, using parametric,

non-parametric or semi-parametric methods (John

and Langley, 1995; Lerner, 2004). Discretization is

usually chosen for problems having small sample

sizes that cannot guarantee accurate density esti-

mation (Yang and Webb, 2002). Noticeably, pre-

diction based on discretization is prone to errors

due to lost of information. Generally, the accuracy
discretization methods provide will peak for a spe-

cific range of bin sizes deteriorating as moving

away from the center of this range (Malka and

Lerner, 2004). A too small number of bins will

smooth the estimated density and a too large num-

ber of bins will lead to the curse of dimensionality

resulting in performance worsening in both cases.

Besides, a too large number of bins will overload
the calculation.

In parametric density estimation we assume a

model describing the density and look for the opti-

mal parameters for this model. For example, for a

Gaussian model we ought estimating the data mean

and variance. A single Gaussian estimation (SGE)

is straightforward to implement and it bares almost

no computational load to the NBC but its accuracy
declines with the degree of deviation of the data

from normality, which is expected in many real-

world problems (John and Langley, 1995; Lerner,

2004). Extending parametric density estimation

using Bayesian approaches (Heckerman, 1995),

we update an a priori probability (e.g., Dirichlet

prior) on the parameters using the likelihood for

the data, thus combining prior and acquired knowl-
edge jointly. However, when enough data is

available (and the number of parameters is not

too large) the likelihood in Bayesian estimation
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Fig. 1. A graph of an example Bayesian network. Arcs manifest

dependencies between nodes representing variables.
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