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a b s t r a c t

This paper introduces a highly discriminative, precise and simple descriptor of natural textures, based on
the curvelet transform. The proposed descriptor is calculated from the statistical pattern of the curvelet
coefficients. The image is mapped to the curvelet space, where a statistical parametric model approaches
the data distribution for each of the sub-bands. Once these parameters are estimated, they are subband-
energy sorted out, achieving thereby the invariance to planar rotations. Finally, the Kullback–Leibler
divergence between the statistical parameters is used to estimate a distance between images. We dem-
onstrated the effectiveness of the proposed descriptor for classification and retrieval tasks.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Features with highly discriminant texture characteristics are a
fundamental concern in the artificial vision domain, particularly
for the problem of classification and/or retrieval. Typical applica-
tions include microscopical or satellite images (Randle and Engler,
2000). Formally, the feature extraction process is thought of as a
mapping of an image collection to a characteristic space, which
provides a representation where similar images are close and dif-
ferent images are far. Images projected onto this space are charac-
terized by features which capture particular image properties,
typically statistical data attributes. In the particular case of tex-
tures, the most popular characteristic spaces are currently the dis-
crete cosine, wavelets and Gabor transforms (Randen and Husy,
1999; Petrou and Sevilla, 2006). Unfortunately, these spaces are
sub-optimal for this problem because textures are naturally en-
tailed with geometrical, scale and directional properties which
are poorly described with these transforms (Do and Vetterli,
2003). Texture is usually classified using either statistical methods,
primitive-based methods or multichannel filtering methods. Most
of the first and second order statistical models, for instance gray
level co-occurrence matrices or Markov random fields, have shown
acceptable results only for microtextures (Haralick et al., 1973;
Cohen et al., 1991). Primitive-based methods may capture only
regular patterns since they follow specific matching rules (Hong
et al., 1980). Multichannel filtering methods decompose a texture
input image into image features using a bank of filters (Randen
and Husy, 1999). Multiresolution analysis is a natural characteris-
tic of spatial-frequency methods, case in which correlation through

the different scales allows a much more complete texture analysis.
Spatial-frequency analysis such as Gabor filters (Arivazhagan et al.,
2006) and Wavelet transform (Chang and Kuo, 1993; Arivazhagan
and Ganesan, 2003) provide good multiresolution analytical tools
for texture classification, and achieve a high accuracy rate. Gabor
filters are well localized in space and frequency, but they are
computationally expensive for the low frequency components. In
addition, Gabor filter banks are not orthogonal, whereby a signifi-
cant texture feature correlation is inevitable (Unser, 1995). On the
other hand, the success of any comparison between images
depends on the metrics one selects for the specific problem. The
usual metrics is either Euclidian or an estimation of the statistical
dependence such as the Kullback–Leibler divergence (KLD)
(Kullback, 1987). In these terms, the problem of texture character-
ization consists in constructing a feature with high discriminative
power that takes into account the statistical image contents.

Some of the features, already used in this problem, are apt to
capture information of the energy coefficient distribution and in-
clude the total energy, the mean and the variance (Randen and
Husy, 1999). However, these features result insufficient to capture
the statistical properties of natural images (Van De Wouwer et al.,
1999). The problem of texture characterization with curvelets was
already addressed by Dettori and Semler (2007), who studied the
performance of several features, namely: the energy, entropy,
mean and standard deviation of the curvelet subbands. Results
showed significant improvement when comparing with wavelets,
but this characterization did not take into account the particular
statistical patterns of the curvelet coefficients (Alecu et al., 2006).
Sumana et al. (2008) also proposed the curvelet subband mean
and variance as features and the Euclidian distance as similarity
measurement. Results showed again improvement, when compar-
ing with Gabor features. Nevertheless, texture curvelet subbands
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are not described by simple Gaussians so that mean and variance
result insufficient to describe the observed distribution (Alecu
et al., 2006).

In this paper we present a new global descriptor, invariant to
rotation changes. The curvelet space is used to capture information
about edges, which are in fact one of the most discriminating fea-
tures (Field, 1993). These features are the moments of a general-
ized Gaussian density (GGD), a good approximation to the
marginal curvelet subband distribution (Alecu et al., 2006), whilst
the Kullback–Leibler divergence estimates differences between
curvelet coefficient distributions. The main contribution of this pa-
per is the design of a highly discriminative, precise and simple
descriptor of natural textures, provided with a rotation invariance
mechanism and based on the use of GGD moments fitted to the
curvelet coefficients whose distance is estimated with the KL
divergence.

2. Materials and methods

Two input images are curvelet-represented and their frequency
subbands are statistically characterized, using the moments of a
GGD. Invariance to planar rotation is obtained via the circular shift-
ing process (Li et al., 2008), based on the subband energies. Finally,
the Kullback–Leibler divergence computes a distance estimation
between the two representations. This strategy will be further ex-
plained hereafter:

2.1. The curvelet transform

The curvelet transform is a multiscale decomposition, devel-
oped to naturally represent objects in 2D, improving the wavelet
limitations for representing geometrical information (Candes
et al., 2006). Curvelets are redundant bases which optimally repre-
sent 2D curves. Besides the usual information about scale and loca-
tion, already available from a wavelet, each of these frame
elements is able to capture orientation information.

A curvelet can be thought of as a radial and angular window in
the frequency domain, defined in a polar coordinate system, upon
which the different scales are represented as different rings with
different level of frequential detail from the inner (low frequen-
cies) to the outer (high frequencies) rings. This representation is
constructed as the product of two windows: the angular and the
radial dyadic frequential coronas. The angular window provides a
directional analysis and the radial dyadic window is a bandpass fil-
ter, used to analyze image details at different scales (see Fig. 1).
Frequency cuts in both windows are selected, following the para-
bolic anisotropic scaling law width � length2 (see Fig. 1). The moti-
vation behind this selection is to efficiently approximate a smooth
discontinuity curve by ‘‘laying on’’ basis elements with elongated
supports along the curve (Candes et al., 2006). Curvelet bases were
designed to fully cover the frequency domain, in contrast to other
directional multiscale representations such the Gabor transform,
case in which some information is always lost. Thanks to the aniso-
tropic scale, curvelets adapt much better to scaled curves than Ga-
bor transform, improving the representation at different scales and
noise robustness (Candes and Guo, 2002). All these statements
have been experimentally demonstrated by comparing wavelets,
curvelets and Gabor in retrieval tasks (Sumana et al., 2008). The
Fig. 1 shows a curvelet multiscale decomposition example.

2.2. Statistical characterization

Psychophysical research has demonstrated that two homoge-
neous textures are not discriminable if their marginal subband dis-
tributions are alike (Field, 1993), i.e., the frequency subband

distributions have a highly descriptive capacity, at least for the tex-
ture problem. This discriminative power was also experimentally
verified for wavelet and Gabor representations (Randen and Husy,
1999). In the curvelet case, each subband contains information
about the degree of occurrence of similar curves within the image,
that is to say, edge energy levels with similar direction and size.
Recent evidence has demonstrated that the marginal distribution
of curvelet subbands has a discriminant power (Alecu et al.,
2006). Our fundamental hypothesis is that the curvelet distribution
information may also provide enough discriminant power to tex-
ture patterns. As observed in Fig. 2, the curvelet subband coeffi-
cient distributions are characterized by sharper peaks at zero and
heavy tails. In this case, usual Gaussian distribution assumptions
proposed in the literature are not satisfied (Dettori and Semler,
2007; Sumana et al., 2008). In contrast, a generalized Gaussian
density distribution fully characterizes the subband curvelet distri-
bution. As observed in Fig. 2(c) and (e), the GGD (green) provides a
better adjustment to the marginal density than the Gaussian distri-
bution (red). This observation was quantitatively confirmed by
comparing the Kullback–Leibler divergence between the empirical
distribution (ED) and the fitted GGD, and the ED and the fitted
Gaussian distribution. For the example in Fig. 2(a), the KLD value
for ED-GGD comparison was 0.061 and 0.071 for ED-Gaussian.
We extended this analysis to the complete set of subband curvelets
for a set of 20 randomly selected textures in our database, resulting
in a KLD value of 0.096 ± 0.05 (mean ± std) for the ED-GGD and
0.10 ± 0.05 for the ED-Gaussian case. This analysis shows that
GGD provides a better adjustment to the curvelet subband distri-
bution than the usual Gaussian characterization.

In general, the curvelet coefficient distribution in natural
images is characterized by a sharper peak centered at zero with
symmetrical smooth tails. This shape is associated to the sparse
property of this transformation, i.e., relatively few large coeffi-
cients capture most of the information. This leptokurtic pattern
has been previously observed in curvelets (Alecu et al., 2006;
Boubchir and Fadili, 2005) as well as in wavelets (Do and Vetterli,
2002). This work proposes a texture characterization via the mar-
ginal distribution of the subband curvelet coefficients, specifically
using the parameters of a generalized Gaussian density. Recent
experimentation in natural images (Alecu et al., 2006) shows that
the generalized Gaussian density provides a good adjustment to
the marginal density of the curvelet coefficient, within each sub-
band. The GGD reads as pðx;a; bÞ ¼ b

2aCð1=bÞ e
�ðjxj=aÞb, where CðzÞ ¼R1

0 e�ttz�1dt; z > 0 is the Gamma function, a is the variance and b
is related to the decreasing rate of the GGD. The parameters a
and b are estimated from the subband data using maximum likeli-
hood, as detailed in (Do and Vetterli, 2002). These parameters (a,b)
are herein used as descriptor of the probability density function of
the energy levels inside each curvelet subband.

2.3. Rotation invariance

Previous texture characterizations have failed when the image
is rotated, basically because similar textures with different orienta-
tions have very different statistical subband moments. Some works
(Li et al., 2008; Islam et al., 2009) have tried to overcome this lim-
itation by using the curvelet rotation shifting property, that estab-
lishes that the curvelet subbands of a rotated image are a shifted
version of the original subbands. These approaches have indepen-
dently performed a circular shifting on each scale level, assuming
that the energy of the dominant orientation usually spreads be-
tween two neighboring subbands. Nevertheless, our experiments
on the Brodatz database (Brodatz, 1999) rapidly drive us to the
conclusion that this statement was true only for some patterns. In-
deed, orientation information is not homogenously distributed be-
tween the different scale levels and its calculation is not therefore
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