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a b s t r a c t

New generations of telecommunications systems will include high-definition 3D video that provides a
telepresence feeling. These systems require high-quality depth maps to be generated in a very short time
(very low latency, typically about 40 ms). Classical Belief Propagation algorithms (BP) generate high-
quality depth maps but they require huge memory bandwidths that limit low-latency implementations
of stereo-vision systems with high-definition images.

This paper proposes a real-time (latency inferior to 40 ms) high-definition (1280 � 720) stereo matching
algorithm using Belief Propagation with good immersive feeling (80 disparity levels). There are two main
contributions. The first is an improved BP algorithm with pixel classification that outperforms classical BP
while reducing the number of memory accesses. The second is an adaptive message compression tech-
nique with a low performance penalty that greatly reduces the memory traffic. The combination of these
techniques outperforms classical BP by about 6.0% while reducing the memory traffic by more than 90%.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

3D telepresence systems have implementation requirements
that are hard to comply with. For example, the (Vision, 2009) pro-
totype requires high-definition (HD, at least 1280 � 720 pixels at
30 fps), low latency (depth estimation in less than 40 ms) and good
immersive feeling (high-quality depth estimation and more than
80 disparity levels). Additionally, it has to be implemented in a
high-performance HW platform with a memory bandwidth of
about 19 GB/s. As far as we know, there are no previous works sat-
isfying all these requirements.

Stereo matching using Belief Propagation (BP) is one of the most
efficient solutions for obtaining high-quality depth maps. This iter-
ative algorithm passes messages, which model the cost of assigning
disparities, among pixels in order to find a global solution with min-
imum assignation cost. Most of the work using BP is based on Fel-
zenszwalb and Huttenlocher (2006), which is referred to as
classical BP in this paper. However, the execution time of this algo-
rithm in a PC cannot satisfy real-time (RT) requirements with HD
images. Even ASIC/FPGA-based implementations, such as (Liang
et al., 2009), cannot satisfy all (Vision, 2009) requirements. Some
BP algorithms have been implemented in GPUs (Grauer-Gray and
Kambhamettu, 2009) although they have limited performance
mainly due to main-memory bandwidth limitations. Nowadays,

memory bandwidth has become a more performance-limiting factor
than the number of algorithm operations. To overcome this (Tseng
et al., 2007) split the image into several unconnected regions. How-
ever, for RT applications, the size of these regions is normally very
small and this greatly reduces performance. Moreover, some pro-
posals have concentrated on reducing or compressing the number
of messages in BP (Huq et al., 2008, Yu et al., 2007). However, they
require the decompression of the messages and are not able to meet
HD and RT constraints.

One way to improve BP is to include occlusion, potential error
and texture-less region handling. A simple method of detecting
occlusion is the cross-checking technique (Egnal and Wildes,
2002). Other occlusion-handling approaches generate better re-
sults (Sun et al., 2005) but they double the computational
complexity. Some other techniques have improved depth estima-
tion in texture-less areas (Yang et al., 2008), but only with low-res-
olution images and 48 disparity levels. Other approaches attempt
to reduce potential errors (Gong and Yang, 2005), but they work
with medium-resolution images.

Another way to improve BP is to chain several executions of the
algorithm. Some proposals (Yang et al., 2009) use several BP mod-
ules and show good performance but high execution times.

This work presents a BP architecture that complies with actual
telepresence system requirements (Vision, 2009). There are two
main contributions. Firstly, it splits the algorithm into two BPs that
work serially while reducing the number of memory accesses. Be-
tween the two blocks, the pixels are classified into four categories
(occlusion, potential-error, texture-less and reliable pixel) and
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their disparity assignation costs are redefined. Secondly, it defines
an adaptive message compression technique to reduce memory
traffic with little performance penalty, mainly because there is
no need to uncompress.

The remainder of this paper is organized as follows. In Section 2,
we discuss the double BP with occlusion, error and texture-less
handling methods, as well as the compression technique used to
fulfill the memory access requirements. Finally, we present the
experimental results and conclusions in Sections 3 and 4.

2. Proposed real-time high-definition belief propagation

In Vision (2009), classical BP with a linear truncated model for
messages was evaluated with an image library. This experimental
study concluded that telepresence system requirements can be ful-
filled with a minimum of 7 iterations and 80 disparity levels. Addi-
tionally, if variables are quantified using 16 bits the impact on
results will be acceptable. With these heuristic parameters the
classical BP technique satisfies most of the quality constraints of
a telepresence system. However, it cannot satisfy the RT and mem-
ory bandwidth restrictions.

One of the most restrictive parameters is the number of exter-
nal memory accesses. The actual high-performance platform,
which is used as the hardware reference model in this work
(Synplicity, 2009), could support up to 6 DDR2-400 memories with
64-bit words. The maximum number of memory accesses that can
be performed in this platform is about 384 million, while the algo-
rithm requires 2881 million. Thus, the system is not implement-
able in RT in an actual high-performance platform and it would
require a reduction in the number of accesses by almost 90%.

2.1. Main algorithm

The proposed algorithm chains two BP executions (see Yang
et al., 2009) with an important improvement: between executions,
the pixels are classified by the OE module into reliable, occlusion,
error and texture-less pixels. The OE module will be presented
on Section 2.2. Moreover, in order to achieve the real time require-
ments, a new compression algorithm (explained in Section 2.3) is
applied to the messages of the two BP algorithms. Hereinafter, this
algorithm will be denoted as real-time high-definition belief prop-
agation (RT-HD BP). It performs the following steps:

1. Read left and right images and compute data-cost
2. Iterative BP (BP1) over all the pixels
3. Output: for each pixel, send to the output (see Section

2.2):
(a) Minimum disparity label of the left-image depth

map.
(b) Third minimum disparity label of the left-image

depth map.
(c) Minimum disparity label of the right-image depth

map.
4. Classify pixels into reliable, occlusion, error and texture-

less (OE Module)
5. Calculate new data-cost based on previous classification

(OE Module)
6. Iterative BP (BP2) only over non-reliable pixels
7. Output: for each pixel, send to the output:
� Minimum disparity label of the left depth map (final

result).

The aim of BP1 is to provide the OE module with enough informa-
tion to classify the image pixels. This classification can be obtained
with a relatively low number of iterations, as convergence pixels

and occluded ones are rapidly located. After the pixel classification
has been obtained, BP2 generates the final depth map with a reduced
number of iterations, due to the extra information provided by BP1.
Moreover, it also saves memory traffic, performing message calcula-
tion only on non-reliable pixels (about 20% of the pixels). It might
seem that the complexity and memory bandwidth requirements
of the proposed technique could double classical BP (there are 2 BP
blocks, steps 2 and 6). However, the BP1 and BP2 blocks can be
implemented in the same hardware module (they have exactly the
same architecture) and the total number of memory accesses is re-
duced with respect to classical BP because RT-HD BD needs fewer
iterations to converge. In classical BP, the number of iterations is
constant, but in RT-HD BP it changes depending on the level and it
is reduced in the last and most computationally expensive steps.
This reduction is a consequence of two advantages of the proposal.
First of all, BP1 makes use of an empirical observation: most of the
pixels that converge to correct values will normally do so in a low
number of iterations. Thus, the number of iterations of the BP1 block
can be very small. Secondly, after the pixel classification, the pixel
data cost depends of the pixel type, improving BP2 convergence.
Additionally, BP2 only calculates messages on non-reliable pixels,
reducing the number of iterations. Both contributions reduce the
number of iterations and memory accesses.

2.2. Pixel classification techniques

When a pixel has converged in the BP algorithm, the sum of the
incoming belief messages (SoIM function) tends to have a linear
‘‘V’’ shape (Fig. 1(a)). This shape is centered on the label index (dis-
parity value). It has been empirically observed that the pixels that
converge will normally present a SoIM function with a well-
defined ‘‘V’’ shape during the first iterations of the last levels
(0,1) in the BP1 module. The rest of the pixels usually present a
non-‘‘V’’ shape or a SoIM function with several local minima
(Fig. 1(b)). Based on this observation, we use a simple technique
to identify the pixels that probably converge: if the SoIM function
has a ‘‘V’’ shape, the first (1M in Fig. 1), second (2M) and third (3M)
minimum disparity values will normally be consecutive values.
However, if the shape is different, this does not usually occur
(Fig. 1(b)). This simple observation normally produces good results
with a very low computational effort. The pixel whose SoIM func-
tion has a ‘‘V’’ shape will be classified as a reliable pixel and the rest
are classified as potential error pixels.

The OE module generates a two-bit per pixel map that classifies
the pixels into four categories: reliable, potential error, occluded
and texture-less pixels:

(1) Occluded: generates the occlusion map using a cross-check-
ing technique based on Egnal and Wildes (2002). Since the
left and right images are viewing roughly the same scene,
the horizontal disparity images derived from matching
right-to-left and left-to-right should be negatives of each
other. The hypothesis is that the points where the two
images are not negatives of each other are occluded.

(2) Texture-less: we observe differences between the first ten
minimum values on the fly. When the medium difference
is below an experimental constant it is a texture-less pixel.

(3) Reliable pixels: SoIM function with a ‘‘V’’ shape.
(4) Potential error: Pixel which is not (1) or (2) and whose SoIM

function does not have a ‘‘V’’ shape.

2.3. Message compression

BP2 limits the message calculation to non-reliable pixels, as
reliable pixels have already converged. Performing message
passing on non-reliable pixels reduces the memory traffic by about
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