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Abstract

This paper proposes a methodology for the extraction of a compact thermal model for multiple heat source devices, which can be used for

estimation of the overall temperature field. This extraction is based on the physical parameters as well as on the layout and the packaging of

the device. The model directly represents the regions surrounding a source by a resistance network containing the specific parameters of

source and chip in analytical form, so that it is easy to vary parameters like power dissipation and thermal conductivity within a wide range.

In order to obtain a good and fast approximation of the continuous case, the shape of the volume elements represented by a node in the

network is chosen regarding the direction of the heat flow within these elements. Therefore these volume elements are not rectangular but

pyramid- or parallelogram-like structures. The temperature fields of multiple sources add up for the total temperature distribution, by the use

of a matrix field representation.
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1. Introduction

In modern complex mixed signal chips the junction

temperature is not uniformly distributed across the die, but

is a function of the placement of different modules in the

chip layout [1–3]. The heat generating and temperature

sensitive parts of the IC are therefore exposed to different

temperatures, regarding their placement and power dissipa-

tion. In many devices the number of such heat generating

parts can easily reach 20–30. The number of heat sensitive

parts can be even bigger. Because of this fact, the

specification of a single thermal resistance for characteriz-

ing such a device is not enough.

Various methods have been used to describe the thermal

behavior of a semiconductor chip: numerical computation [4],

e.g. Finite Element Method, or an analytic description of

the temperature field, by, e.g. the image method [5,6] or the

theory of the Green functions [7–9]; or a description of the

entire structure of an ASIC by a network of concentrated,

discrete resistances [2,10]. Often also a combination of the

different methods is used [11–13].

In the method of the concentrated elements a topological

resistance network is developed which mostly does not refer

to the geometry of the structures, but simply describes the

existence of thermal coupling within the system, in static or

dynamic (including capacitors in the resistance network)

case. In general it is not straightforward to find values of the

network elements that give an overall good approximation.

Especially the ratio of the resistances responsible for lateral

or vertical flow, is difficult to obtain. In this paper the

thermal response of the surroundings of a source within an

ASIC will also be transferred into a resistance network, but

with a closer look to the direction of the heat flow in the

three-dimensional elements.

2. Model structure

Our model consists of a resistor network whose node

voltages represent the temperature distribution as a function
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of stepwise increasing distance from the source, within a

(limited) region around the source from which appreciable

thermal response is to be expected.

Since the heat flow caused by a heat source on the surface

of a chip runs not only perpendicularly downward, but a

large part of the heat flow also spreads laterally, it is vital to

describe the individual resistances in the heat flow path as

well as possible. This is the reason for developing a specific

geometrical model for the thermal resistance elements

which is presented in Section 2.1.

The heat sources within the chip are represented by

equivalent unit current sources. Their temperature response

on the surface of the die is calculated from the specific

thermal network. At this point, comparison with other

methods (ANSYS, limiting analytical solutions) is possible.

This can also be used to optimize the results by adjusting

model parameters. To avoid the use of a network simulator,

the voltages are computed with the help of the two-port

network theory. This is possible due to the one-dimensional

chain structure of the model. Voltage values determined in

such a way are transferred into a unit source temperature

matrix containing elements for all the points of an

equidistant grid covering the chip. This matrix represents

the temperature distribution for a unity source with a unity

area on the surface of the die. An advantage of this

normalized representation is that it contains overall scaling

parameters like thermal conductivity, geometry data. Thus it

is possible, with only one unit matrix, to describe different

sources in different materials by simple addition, multipli-

cation, and lateral translation operations.

2.1. Geometrical model

For the consideration of the temperature field in a solid

body, a geometrical interpretation of the thermal resistance

is desirable, since one can transfer the topology, i.e. the

arrangement of the different layers and areas in a chip,

directly to these discrete elements. Using the thermal-

electrical analogon, the resistance is defined as

Rth Z
l

lA
(1)

with l as length, A as cross-section area and l as thermal

conductivity of a material element with rectangular

boundaries.

For our model we assume that the resistance representing

the volume under the heat source, have a form similar to a

frustum of pyramid. Resistances, which then border on the

areas underneath the heat source, nestle themselves to those.

Fig. 1 shows the resistance under the heat source with the

first of adjacent pairs of resistances to its right. In [14] for a

homogeneous material a propagation angle a of about 408 is

suggested, without a detailed justification for this value. We

will come back to this issue in Section 3.

In order to be able to adequately describe the heat flow,

the volume taking part in heat conduction is described by

two resistances RL describing the lateral and RV the vertical

heat flow. Fig. 2 shows such a thermal network.

The heat conducting volume is divided around the source

into n disk/layers, which are represented by n pairs of

chains. Because of symmetry only one half of the chain is

needed. It should be noted that the resistance chain has to be

long enough so that a current flow at the chains end can be

set to zero, which means that there is no remarkable thermal

effect further away from the source.

We investigated two cases of source geometry: an

infinite line and a (small) square.

2.2. Infinite line source

For a line source regarded as infinite in one direction, the

isotherms spread parallel to the source. In other words, if

one cuts in a plane perpendicular to the heat source, then the

temperature distribution looks always alike, no matter in

which place of the material, along the source, the cut is

placed.

For the temperature distribution the resistance R0 in

Fig. 2 plays a special role. It describes the entire volume

directly underneath the heat source. For the heat flow under

the heat source, one can assume that the heat conducting

area increases with the increasing distance from the source.

In order to take this into account, the resistance R0 is

calculated in dependence of the opening angle a. For a

source with the surface A0Zab the angle-dependent

resistance R0, in accordance with Fig. 1, becomes

R0 Z
1

l

ðl

0

1

Kx CL
dx (2)

with KZ2b tan(a) and LZab. According to [15] this

integral is always analytically solvable, independent of

whether the source surface shape is rectangular or a square.

The integral represents a sum of infinitesimally thin layers,

Fig. 1. Heatflow represented by three resistances.

 

Fig. 2. Heat flow represented by a resistance chain.
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