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Abstract

A detailed analysis of the statistical distribution of conductance P(g) of quasi-one-dimensional disordered wires in the metal–insulator

crossover is presented. The distribution P(g) is obtained from a Monte Carlo solution of the Dorokhov, Mello, Pereyra and Kumar (DMPK)

scaling equation, showing full agreement with ‘tight-binding’ numerical calculations of bulk disordered wires. Perturbation theory is

shown to be valid even for mean dimensionless conductance values !gO of the order of 1. In the crossover from diffusive to localized

regimes (!gO!1), P(g) presents a characteristic shape different from that observed in surface disordered wires.
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1. Introduction

The study of disordered systems plays a relevant role in

Solid-State Physics (as well as in many other research areas)

since well-ordered systems are exceptional situations, and

the presence of disorder is a familiar situation to be taken

into account when analysing actual physical systems

(in many cases fabricated or synthesised with limited

precision). When studying disordered physical systems, it is

generally accepted that physical measurements on a single

sample are well described by the quantities averaged over an

ensemble of systems. The reason for this belief is that

systems are self-averaging, which constitutes a central piece

of the ‘macroscopic’ description of the system.

At sufficiently small length scales this macroscopic

description fails, and a microscopic approach must then be

taken into consideration. In particular, the macroscopic

approach breaks down at surprisingly large length scales for

disordered systems. It has been needed to develop a new

approach to describe small and disordered systems. This

description, in which the whole distribution function of the

physical quantities is taken into account, is so-called the

‘mesoscopic’ approach.

One of the most extensively studied phenomena in

mesoscopic physics is the behaviour, at low temperatures, of

the statistical distribution of the dimensionless conductance

P(g) of a disordered system as a function of its length L. The

magnitude g is defined as gZG/G0, where G is the

conductance of the system and G0Z2e2/h the quantum of

conductance (e being the electron charge and h the Planck

constant). Large values of the conductance variance

(var(G)) and different transport regimes were found for

increasing length of a disordered system [1,2]. For lengths

smaller than the elastic mean free path, le, the electron

transport through the system is ballistic, and the con-

ductance distribution depends on the microscopic details

characterising the system (system geometry, effective

potential acting on the electrons). For L values larger than

le, electron transport becomes diffusive (entering into the

diffusive or metallic regime). The signature of the diffusive

regime is that P(g) presents a Gaussian shape with the same
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value of the conductance variance, irrespective of the

sample length, the mean value of the conductance and

microscopic details of the system. This property is known as

universal conductance fluctuations (UCF) [1,3,4]. For even

longer systems, transport enters in a new regime called

localized or insulating regime in which the conductance

decays exponentially with the system length and P(g) is log-

normal [5]. However, the transition of P(g) from Gaussian

to log-normal shaped distributions when the quasi-1D

system evolves from metallic to insulating regimes is not

yet well understood.

During the last years there has been an increasing interest

in the study of P(g) at the crossover region (from diffusive to

localization regimes) motivated by the numerical and

analytical support for the existence of a universal

distribution at the metal–insulator transition [6], the

evidence of a broad distribution of the critical conductance

at the integer quantum Hall transition [7,8] and the

anomalous conductance distributions recently found in

gold wires [9]. The understanding of the crossover region

is not only important in electronic systems but could also

play an important role to determine the onset of localization

in photonic systems [10].

For quasi-one-dimensional (Q1D) systems, where there

is only a smooth crossover from the metallic to insulating

regimes, the behaviour of P(g) is highly nontrivial. It has

been recently shown [11] that in the crossover region P(g) is

highly asymmetric, and is described by an one-sided

log-normal distribution. For larger disorder, the tail of the

log-normal distribution for gO1 is cut off by a Gaussian.

These distributions have been observed in numerical

simulations of different model systems [8,12,13]. In the

crossover region (where !gOz1/2), numerical

calculations of surface disordered wires (SDW) [12] have

found a striking behaviour quite different from both the

log-normal and Gaussian distributions. In particular, P(g)

presents a ‘cusp-point’ at gZ1 and is well described by

random matrix theory (RMT) for two fluctuating channels

[12]. Here we show that P(g) for bulk disordered wires

(BDW) presents a sharp feature for !gOz1, which,

however, differs from that observed in SDW. These results

strongly contrast with the smooth behaviour of the

conductance mean and variance [14] and the distributions

of transmission coefficients [15], which were obtained

exactly from the non-linear sigma model.

In this work we present a detailed analysis of the metal–

insulator crossover based on the scaling approach of

Dorokhov, Mello, Pereyra and Kumar (DMPK) [16] in the

presence (bZ1) or absence (bZ2) of time reversal

symmetry. By using numerical methods based on Monte

Carlo techniques, we have obtained the exact conductance

distribution of the DMPK equation all the way from the

metallic to the insulating regimes. We have also performed

extensive numerical calculations using the ‘tight-binding’

model for BDW with diagonal disorder (Anderson Model).

We will show that the results of the Anderson model in

the weak disorder limit are in full agreement with the

solution of the DMPK equation. However, we will show that

for increasing disorder the distribution P(g) of both, BDW

and SDW, differs from the DMPK results.

2. The DMPK approach

The DMPK approach [16] describes the evolution of the

join probability distribution of transmission eigenvalues

§(T1,.,TN;sZL/le) with increasing wire length L, where N

is the number of open channels where electron transport is

allowed. It is more convenient to use the set of N

variables (xnZ1,.,N) where TnZ1/cosh2(xn). The distri-

bution §(xZx1,x2,.,xN;s) is obtained by solving an

associated N-dimensional Fokker–Planck equation (gener-

alized diffusion equation) obtained from a first-order

perturbative analysis of the transfer matrix solution for a

disordered system of increasing length. Once §(x;s) is

determined, it is feasible to find the statistical distribution of

the dimensionless conductance PðgÞZP gZ
P

nZ1;.;N Tn

� �

for any L value.

However, the solution of the Fokker–Planck equation

leading to §(x;s) is a non-trivial exercise. In fact the exact

solution §exact(x;s) of the DMPK equation is only known

for bZ2 [4]. However, in the diffusive limit the solution

§diff(x;s) (for both bZ1 [17] and bZ2) can be written in

the general form of a Gibbs distribution §diff(xZx1,x2,.-
xN;s)wexp[KbHdiff(x;s)], where Hdiff(x;s) is given by:

Hdiffðx; sÞ Z
X

i!j

ui;j C
X

i

Vðxi; sÞ (1a)

ui;j ZK
1

2
lnjsinh2ðxjÞKsinh2ðxiÞjK

1

2
lnjx2

j Kx2
i j (1b)

Vðx; sÞ Z gð2sbÞK1x2 K ð2bÞK1lnjx sinhð2xÞj (1c)

with gZbNC2Kb. Following Eq. (1), Hdiff(x) may be

interpreted as the Hamiltonian function of N classical

particles located at positions xnZ1,.,N where ui,j represents

the interaction potential between two particles located at xi

and xj, and V(x;s) is an effective confining potential.

3. Bulk disordered wires (BDW): a Monte Carlo solution

of the DMPK model

Since there is a clear analogy between the solution of the

Fokker–Planck and that of the effective N-particles systems

described by the Hamiltonian described by Eq. (1), we have

computed the main statistical properties of P(g) using

classical Monte Carlo techniques [18]. This method has

been previously used to analyse fictitious Gibbs distri-

butions of eigenvalues of random matrix models [19], but,

to our knowledge, it is the first time used to describe

electronic transport properties.
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