
Algorithm transformation methods to reduce the overhead of
software-based fault tolerance techniques

José Rodrigo Azambuja a,⇑, Gustavo Brown b, Fernanda Lima Kastensmidt a, Luigi Carro a

a Instituto de Informática, PPGC and PGMICRO at Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
b Facultad de Ingeniería at Universidad de la República, Montevideo, Uruguay

a r t i c l e i n f o

Article history:
Received 29 July 2011
Accepted 22 November 2013
Available online 22 December 2013

a b s t r a c t

This paper introduces a framework that tackles the costs in area and energy consumed by methodologies
like spatial or temporal redundancy with a different approach: given an algorithm, we find a transforma-
tion in which part of the computation involved is transformed into memory accesses. The precomputed
data stored in memory can be protected then by applying traditional and well established ECC algorithms
to provide fault tolerant hardware designs. At the same time, the transformation increases the perfor-
mance of the system by reducing its execution time, which is then used by customized software-based
fault tolerant techniques to protect the system without any degradation when compared to its original
form. Application of this technique to key algorithms in a MP3 player, combined with a fault injection
campaign, show that this approach increases fault tolerance up to 92%, without any performance
degradation.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Future technologies will be much more unreliable [1] and, at
the same time, the performance gap between memory and proces-
sors will not get any smaller [2]. Memories have long been pro-
tected against multiple fabrication defects [3,4]. Hence, thanks to
their regularity, memories would be a natural fabric to help one
cope with unreliable technologies. Although the idea of bringing
computation to memory is old [5,6], it never quite succeeded.
However, as we move from an era where single defects, high reli-
ability and high yield were present, to a situation with multiple de-
fects and low yield in the logic, the idea of using high reliable
memories as a substitute to traditional computation gets more
appealing.

In this paper we present a framework for algorithm transforma-
tion with the purpose of achieving reliable fault tolerant designs
and, at the same time, improve performance. We show that mem-
ory can be used as a direct replacement of computations, thus
decreasing the area of unreliable hardware that cannot be easily
corrected or protected [7]. Furthermore, the same strategy that fa-
vors reliability also favors parallelism. The main idea is to analyze a
given algorithm and, using induction variables analysis [8,9] and
other related tools like memorization [10], replace most of the
computations a processor performs by accesses to some tables of

precomputed values stored in memory. Our aim is to transform
the algorithm in such a way that the computations left are just
applications of simple functions over the input data and the pre-
computed data. By simplifying the amount of computations that
must still be done by the processor, software-based fault tolerance
can be better applied, and hence no performance penalties are in-
curred, but fault tolerance improves by 92%.

Many of the algorithms for data processing used nowadays al-
low for the transformations here proposed. We will focus on two
of the key algorithms which are part of the MP3 [11] coding
scheme, namely the modified cosine discrete transformation
(MDCT) [12] and the Huffman coding algorithm [13], along with
the discrete Fourier transformation (DFT) [14] widely used in sig-
nal processing. Finally, we will discuss how the proposed fault tol-
erant strategy can be deployed in this real life application.

2. Related work

Enhancing reliability has become one of the key issues for cur-
rent and future hardware designs. Several research trends on this
subject are described in [1,15]. Aside from the ongoing efforts on
fault avoidance [16,17], current fault tolerance techniques rely on
space or time redundancy to provide fault tolerance [18,19] which,
for TMR, triplicates the amount of space/time required.

In the 70s Stone [5] described a technique to use memory as an
alternative to classical computation. However, it has never gained
substantial attraction, as it posed restrictions on the way the pro-
gram running on such devices should be written. Later, with the
introduction of Computational RAM, a new architecture to bring

0026-2714/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.microrel.2013.11.011

⇑ Corresponding author. Tel.: +55 51 3308 7036.
E-mail addresses: jrfazambuja@gmail.com, jrazambuja@inf.ufrgs.br (J.R. Azam-

buja), gbrown@fing.edu.uy (G. Brown), fglima@inf.ufrgs.br (F.L. Kastensmidt),
carrofglima@inf.ufrgs.br (L. Carro).

Microelectronics Reliability 54 (2014) 1050–1055

Contents lists available at ScienceDirect

Microelectronics Reliability

journal homepage: www.elsevier .com/locate /microrel

http://crossmark.crossref.org/dialog/?doi=10.1016/j.microrel.2013.11.011&domain=pdf
http://dx.doi.org/10.1016/j.microrel.2013.11.011
mailto:jrfazambuja@gmail.com
mailto:jrazambuja@inf.ufrgs.br
mailto:gbrown@fing.edu.uy
mailto:fglima@inf.ufrgs.br
mailto:carrofglima@inf.ufrgs.br
http://dx.doi.org/10.1016/j.microrel.2013.11.011
http://www.sciencedirect.com/science/journal/00262714
http://www.elsevier.com/locate/microrel

computation to memory was proposed [6]. It allows a dual use of
memories; memory modules can be seen either as traditional
DRAMs, or as independent SIMD systems which are amenable for
parallel applications. Even though the performance improvement
with this technique looks promising, it appears that more research
is needed to develop applications that take advantage of it.

The use of static analysis tools like induction variables analysis
is very common in the compiler construction area [9,20] as it al-
lows one to improve the performance of the compiled code. It
has also been used as a tool for code optimization targeted to VLSI
designs [21,22]. Memorization, on the other hand, relates to a dy-
namic optimization technique used primarily to compute any gi-
ven function only once, and return a cached value any time it is
required again. Although usually a software based technique, it
has also been incorporated in hardware based solutions [23,24].
Our work relies on these tools to analyze and transform a given
algorithm, but now focusing on reliability enhancement and fault
tolerance as a major goal. Nonetheless, as we later show, the same
tools that help one improve reliability also favor performance.

Using memories to help one to achieve high reliability designs
is a common task nowadays [4,25]. The regularity found on mem-
ories, the use of error correcting codes and small extra logic added
to cope with spare memory rows and columns allow one to effi-
ciently protect them against multiple faults [3]. Furthermore, with
the introduction of magnetic and ferroelectric RAMs, the soft error
rate of such devices dumped near zero [7]. This is why we believe
one should take advantage of the regular structure of memories
(that ease low cost ECC introduction) to better use them at the soft-
ware level, increasing global reliability, without compromising
performance.

3. Proposed algorithm transformation method

The framework for algorithm transformation proposed in this
paper consists of rounds of analysis/transformation steps which
are repeated until no more transformations are feasible. In every
round, parts of the algorithm which apply some computations
are extracted to memory in the form of precomputed indexed data
structures. Care must be taken to assure that the optimized algo-
rithm yields the same results as the original algorithm, and at
the same time the time/space required by the optimized algorithm
does not exceed that of other fault-tolerant approaches like triple
modular redundancy.

The extraction of computation to memory is basically addressed
by the use of precomputed tables, which in turn are indexed by
variables related to the algorithm itself (typically updated by the
algorithm’s inner loops). Thus, to keep the time required to com-
pute the algorithm constrained, care has to be taken just for the
precomputation of the data structures which will be put in mem-
ory. On the other hand, space requirements will need much more
attention as the size needed to hold the precomputed data might
grow too large, whenever the number of indices or their range be-
come too large.

The first step is to analyze the algorithm to find some portions
that fit in the description above. Those portions typically compute
some values based on input values derived from the algorithm it-
self (indices of inner loops and other variables), or the algorithm’s
input data, provided that the range of these inputs are not too
large. This step might be performed manually or automatically
with the aid of static analysis tools (induction variables analysis)
usually found on modern compilers. The next step involves the
rewriting of the identified portions as accesses to data structures
stored on memory. Finally the data structure must be populated
with the precomputed values prior to the execution of the
algorithm. These steps might be performed repeatedly until no

more portions of the algorithm are susceptible of such
transformations.

After all the transformations are applied, two things must be ta-
ken care of to improve the reliability of the hardware it will oper-
ate on. On one hand, the data structures which hold the
precomputed values have to be protected. This can be done using
any of the existing memory protection techniques usually found
on literature. Note that at this point the hardware designer has
quite some flexibility regarding the level of protection (i.e. guard
against multiple defects, etc.) depending on the chosen the protec-
tion scheme and, contrary to traditional TMR implementations,
space/time requirements grow logarithmically with the fault toler-
ance protection.

On the other hand, even as we move computations to memory,
there is still the need to compute something (the memory address
for one thing), and the hardware involved in these computations
must also be protected. This can be accomplished by applying tra-
ditional fault tolerance techniques and by taking into account that,
as the computation needed to execute the algorithm gets smaller,
the hardware involved could be simpler and well protected, with-
out loss of performance compared to the original algorithm.

4. Applying algorithm transformation methods to case study
algorithms

Not every problem is amenable to the transformations we pro-
pose to apply. For example, the simple scalar code A = x.y where x
and y are 16 bits variables would require a giant and slow memory,
and hence the granularity of the proposed approach is important.

Furthermore, once one chooses a problem to optimize, one has
to select a proper algorithm that solves it. For now, we will focus
on algorithms which are heavily based on matrix operations. These
algorithms usually are built over the application of some functions
over the internal loop indices, and the actual input data generally
fulfills our requirements of memory space constraints. For the
experiments reported in this paper, we manually transformed
the algorithm using the approach described in previous sections,
so that most of the complex operations are already precomputed
in memory, and we leave simple operations that handle large range
dynamic data (input or temporary) to be computed online using
the precomputed data. The resulting algorithms allow a fault-toler-
ant hardware implementation via the protection of the precomput-
ed data structures held in memory. For our case study, we focused
on modules which are responsible for more than 70% of the execu-
tion time of an MP3 player and other signal processing problems.

4.1. Case study 1: MDCT algorithm optimization

We first work on the MDCT problem, which is defined as [12]:

Xk ¼
X2N�1

n¼0

xn cos
p
N

nþ 1
2
þ N

2

� �
kþ 1

2

� �� �
; 0 � k < N

where for MP3 coding, N is either 12 or 18. The naïve implementa-
tion is described in Fig. 1. Note that in the second term the cosine

input: vector x (size 2N), matrix M
output: vector X (size N)
for k = 0 to N-1
 for n = 0 to 2N-1
 X(k) = X(k) +
 + x(n)*cos(pi/N*(n+1/2+N/2)*(k+1/2))
 next n
next k

Fig. 1. Naïve MDCT implementation.

J.R. Azambuja et al. / Microelectronics Reliability 54 (2014) 1050–1055 1051

Download English Version:

https://daneshyari.com/en/article/10365739

Download Persian Version:

https://daneshyari.com/article/10365739

Daneshyari.com

https://daneshyari.com/en/article/10365739
https://daneshyari.com/article/10365739
https://daneshyari.com

