
A formal framework for software product lines q

César Andrés, Carlos Camacho, Luis Llana ⇑
Departamento de Sistemas Informáticos y Computación, Universidad Complutense de Madrid, Madrid, Spain

a r t i c l e i n f o

Article history:
Received 24 May 2012
Received in revised form 19 May 2013
Accepted 20 May 2013
Available online 31 May 2013

Keywords:
Formal methods
Software product lines
Feature models

a b s t r a c t

Context: A Software Product Line is a set of software systems that are built from a common set of fea-
tures. These systems are developed in a prescribed way and they can be adapted to fit the needs of cus-
tomers. Feature models specify the properties of the systems that are meaningful to customers.
A semantics that models the feature level has the potential to support the automatic analysis of entire
software product lines.
Objective: The objective of this paper is to define a formal framework for Software Product Lines. This
framework needs to be general enough to provide a formal semantics for existing frameworks like FODA
(Feature Oriented Domain Analysis), but also to be easily adaptable to new problems.
Method: We define an algebraic language, called SPLA, to describe Software Product Lines. We provide
the semantics for the algebra in three different ways. The approach followed to give the semantics is
inspired by the semantics of process algebras. First we define an operational semantics, next a denota-
tional semantics, and finally an axiomatic semantics. We also have defined a representation of the algebra
into propositional logic.
Results: We prove that the three semantics are equivalent. We also show how FODA diagrams can be
automatically translated into SPLA. Furthermore, we have developed our tool, called AT, that implements
the formal framework presented in this paper. This tool uses a SAT-solver to check the satisfiability of an
SPL.
Conclusion: This paper defines a general formal framework for software product lines. We have defined
three different semantics that are equivalent; this means that depending on the context we can choose
the most convenient approach: operational, denotational or axiomatic. The framework is flexible enough
because it is closely related to process algebras. Process algebras are a well-known paradigm for which
many extensions have been defined.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Software Product Lines [1,2], in short SPLs, constitute a para-
digm for which industrial production techniques are adapted and
applied to software development. In contrast to classical tech-
niques, where each company develops its own software product,
SPLs define generic software products, enabling mass customiza-
tion [3]. Generally speaking, using SPLs provide a systematic and
disciplined approach to developing software. It covers all aspects
of the software production cycle and requires expertise in data
management, design, algorithm paradigms, programming lan-
guages, and human–computer interfaces.

When developing SPLs, it is necessary to apply sound engineer-
ing principles in order to obtain economically reliable and efficient

software. Formal methods [4–9] are useful for this task. A formal
method is a set of mathematical techniques that allows automated
design, specification, development and verification of software sys-
tems. For this process to work properly, a well defined formalism
must exist. There are many formalisms to represent SPLs

[10–13]. We focus on one of the most widely approaches: Feature
models [10,13].

A feature model is a compact representation of all the products
of an SPL in terms of commonality and variability. Generally these
features are related using a tree-like diagram. A variation point is a
place where a decision can be made to determine if none, one, or
more features can be selected to be part of the final product. For
instance, in these models we can represent the following property:

There exists a product with features A and C.

In addition, it is easy to represent constraints over the features
in feature models. For instance, we could represent the following
property:

In any valid product, if feature C is included then features A and B

must also be included.

0950-5849/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.infsof.2013.05.005

q Research partially supported by the Spanish MEC project TIN2009-14312-C02-
01 and TIN2012-36812-C02-01.
⇑ Corresponding author. Tel.: +34 913944527.

E-mail addresses: rasec.andres@gmail.com (C. Andrés), carloscamachoucv@
gmail.com (C. Camacho), llana@ucm.es (L. Llana).

Information and Software Technology 55 (2013) 1925–1947

Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2013.05.005&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2013.05.005
mailto:rasec.andres@gmail.com
mailto:carloscamachoucv@gmail.com
mailto:carloscamachoucv@gmail.com
mailto:llana@ucm.es
http://dx.doi.org/10.1016/j.infsof.2013.05.005
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


Feature Oriented Domain Analysis [10], in short FODA, is a fea-
ture model to represent SPLs. This model allows us to graphically
represent features and their relationships, in order to define prod-
ucts in an SPL. The graphical structure of a FODA model is repre-
sented by a FODA Diagram. A FODA Diagram is essentially an
intuitive and easy to understand graph where there is relevant
information about the features. This diagram has two different ele-
ments: the set of nodes and the set of arcs. The former represents
the features of the SPL. The latter represents the relationships and
the constraints of the SPL. We introduce the basic components of a
FODA diagram in Fig. 1. With these elements we can model com-
plex SPLs.

For instance, let us look at the FODA Diagrams in Fig. 2. The
Examples a and b show two SPLs with possibly two possible fea-
tures A and B. With respect to a, the feature A will appear in all va-
lid products of this SPL, while B is optional. Therefore, the valid set
of products of this FODA Diagram is one product with A and one
product with features A and B. In b both features are mandatory,
i.e. any product generated from this SPL will contain features A

and B.
Example c, represents an SPL with a choose-one operator. There

are three different features: A, B and C in this diagram. Any valid
product of c will contain A and one of these features B or C. The
conjunction operator is shown in d and e. In both examples two
branches leave feature A. On the one hand, the branches in Exam-
ple d are mandatory. This means that there is only one product de-
rived from this diagram: the one that contains features A, B, and C.
On the other hand, one branch in Example e is optional and the
other is mandatory. This means that there are two products de-
rived from this diagram: one with features A and C, and one with
features A, B, and C.

Finally, more complex properties appear in Examples f and g. In
these diagrams there are tree constraints combined with optional
features. In f, there is an exclusion constraint: If B is included in a
product then feature C cannot appear in the same product. In g,
there is a require constraint: If B is included then C must also be
included.

Although FODA Diagrams are very intuitive, sometimes it can be
hard to analyze all the restrictions and the relationships between

features. In order to make a formal analysis we have to provide a
formal semantics for the diagrams. To obtain a formal semantics
for SPLs, first we need a formal language. In this paper we define
a formal language called SPLA. As we will see in Section 3, all FODA
Diagrams can be automatically translated into SPLA.

After presenting SPLA, we need to introduce the formal seman-
tics of this algebra. There is previous work on formalizing FODA
and feature models [30,22,31–33,23,24] that we briefly review in
the next section. The approach we follow in this paper is inspired
by classical process algebras [4,6,5]. We define three different
semantics for the language. First we introduce an operational
semantics whose computations give the products of an SPL. Next
we define a denotational semantics that is less intuitive but easier
to implement. Finally we have defined an axiomatic semantics. We
prove that all three semantics are equivalent to each other.

In addition to presenting the formal framework, we have devel-
oped a tool called AT. This tool is an implementation of the formal
semantics presented in this paper. Using AT it is possible to check
properties such as:

� Can this SPL produce a valid product?
� How many valid products can we build within this SPL?
� Given an SPL diagram, can we generate an equivalent SPL dia-

gram with fewer restrictions than the first one?

This tool is completely implemented in JAVA. This tool has a
module to check the satisfiability of an SPL diagram. We carry
out some experiment using diagrams obtained from the random
SPL diagram generator Betty. These experiments shows the scala-
bility of AT. We have checked satisfiability of diagrams with 13,000
features; such diagrams are relatively large given the state of the
art.

In this paper we present a syntactic and semantic framework
that formalizes FODA-like diagrams. First we present a syntax with
the basic operators presented in a FODA-like diagram. Next we de-
fine an operational semantics. This semantics is intuitive and it
captures the notions of the operators. After the operational seman-
tics, we give the denotational semantics. This semantics is more
appropriate for obtaining the products of an SPL. We prove that
both semantics are equivalent. We also define an axiomatic seman-
tics. As far as we know, this semantics does not appear in any of the
previous frameworks. We prove that this semantics is sound and
complete with respect to the previous ones. Inspired by recent
works in process algebras, we also give a way to represent the
terms of the algebra into propositional logic. Finally we have
implemented a tool that supports our framework. The tool is split
into two modules. One module deals with the denotational and
axiomatic semantics while the other deals with the representation
into propositional logic. The second module uses SAT-solver to
check the satisfiability of an SPL.

This paper tries to show that SPLs can benefit from the process
algebra community mainly because process algebras have been
studied from many points of view. For instance, there have been
numerous proposals to incorporate non-functional aspects such
as time and probabilities. In particular, we are currently working
in the following aspects. First, we are studying how to introduce,
the notions of costs and time. In this context, it is also important
the order in which products are elaborated, and therefore, se-
quences instead of sets have to be used. Second, we would like
to work with models that indicate the probability of a product. This
can be applied, for example, in software testing, so that we can add
more resources to test the products with higher probabilities.
Moreover, our semantic approach, based on alternative semantics
that are shown to be equivalent, can be used in further extensions
of both the formalism used in this paper and other formalisms of
similar nature.

Fig. 1. FODA diagram representation.

Fig. 2. Examples of FODA diagrams.

1926 C. Andrés et al. / Information and Software Technology 55 (2013) 1925–1947



Download English Version:

https://daneshyari.com/en/article/10366586

Download Persian Version:

https://daneshyari.com/article/10366586

Daneshyari.com

https://daneshyari.com/en/article/10366586
https://daneshyari.com/article/10366586
https://daneshyari.com

