
Parallel testing of distributed software

Alexey Lastovetsky

Department of Computer Science, University College Dublin, Belfield, Dublin 4, Ireland

Received 18 March 2003

Available online 25 December 2004

Abstract

The paper presents the experience of the use of parallel computing technologies to accelerate the testing of a complex distributed

programming system such as Orbix 3, which is IONA’s implementation of the CORBA 2.1 standard. The design and implementation of the

parallel testing system are described in detail. Experimental results proving the high efficiency of the system are given.

q 2004 Elsevier B.V. All rights reserved.

Keywords: Parallel computing; Software testing; Distributed programming systems; Software maintenance; CORBA; Orbix

1. Introduction

Software testing is a very labour-intensive and hence

very expensive process. It can account for 50% of the total

cost of software development [1–3]. Software testing is also

a very costly part of software maintenance in terms of

contribution in the total time of the process of maintenance.

If the process of testing could be accelerated, significant

reductions in the cost of software development and software

maintenance could be achieved.

In this paper, we present a case study demonstrating the

use of parallel computing for acceleration of the testing of a

complex distributed programming system such as Orbix 3

[4], which is IONA’s implementation of the CORBA 2.1

standard [5].

Orbix 3 is a distributed programming system used by

thousands corporate users around the world. It is an axiom

that any software system has bugs. The wider and more

intensive is the usage of the software system, the more bugs

are exposed during its exploitation. Orbix 3 is not an

exception to the rule. Every day its users report new bugs

affecting the functionality or performance of the Orbix 3

software. A dedicated team of software engineers is

constantly working on the bugs and making appropriate

changes in the Orbix 3 code.

The maintenance process includes running an Orbix 3

test suite before and after any changes made in the Orbix 3

source code in order to:

† See if the bug has been fixed;

† Check that the changes themselves do not introduce new

bugs into the software.

The test suite consists of many hundreds of test cases.

Each fixed bug results in one more test case added to the test

suite. This test case should test the problem associated with

the bug and demonstrate that the problem has been solved.

Thus the number of test cases in the test suite is constantly

growing.

The serial execution of a test suite on a single machine

might take from 9 to 21 h depending on the particular

machine and its workload. The test suite must be run against

at least three major platforms. For each platform the test

suite must be run at least twice, namely before and after the

corresponding changes are made in the Orbix 3 source code.

Thus, on average, the best time for running a test suite is

90 h per bug. Often, however, it takes longer. For example,

if a bug is reported in some minor platform, the test suite

should be run against both all major platforms and the minor

platform. If the bug has enough complexity, the very first

solution of the problem may introduce new bugs, and hence

more than one solution will have to be tested during the

work on the bug.

0950-5849/$ - see front matter q 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2004.11.006

Information and Software Technology 47 (2005) 657–662

www.elsevier.com/locate/infsof

E-mail address: alexey.lastovetsky@ucd.ie.

http://www.elsevier.com/locate/infsof


In terms of time, serial running of the test suite is the

most expensive stage of the maintenance process. So its

acceleration could significantly improve the overall per-

formance of the maintenance team. Since the local network

of computers available to the maintenance team includes

more than one machine for each major platform and most of

the machines are multiprocessor workstations, parallel

execution of the test suite seems to be a natural way to

speed up its running.

2. Parallel execution of the Orbix test suite on a cluster
of multiprocessor workstations

As all major platforms, against which Orbix 3 should be

tested, are Unix clones, an immediate idea is to use the GNU

make utility for parallel execution of different test cases of

the test suite. On Unix platforms, the ‘Kj’ option tells

make to execute many jobs simultaneously. If the ‘Kj’

option is followed by an integer, this is the number of jobs to

execute at once. If this number is equal to the number of

available processors, there will be as many parallel streams

of jobs as processors. As the utility assigns jobs to parallel

streams dynamically, the load of the processors will be

naturally balanced.

This simple approach has several restrictions. One is that

it can only parallelize the execution of a set of jobs on a single

multiprocessor machine. Another restriction is that if some

jobs in the set are not fully independent, the straightforward

parallelization may not guarantee their proper execution. For

example, a number of jobs may share the same resources

(processes, data bases, etc.), whose state they both change

and depend on in their behaviour. Such jobs should not be

executed simultaneously, but the GNUmake utility provides

no direct way to specify that constraint.

A typical test case from the Orbix 3 test suite builds and

executes a distributed application. It normally includes the

following steps:

† Building executables of the server(s) and clients of the

distributed application.

† Running the application.

† Analysing the results and generating a report. The report

says whether the test case passed or failed, and includes

the start time and end time of its execution.

On completion of the execution of the test suite, all

individual reports produced by the test cases are summar-

ised into a final report.

During the serial running of the test suite on a single

computer, its test cases share the following resources:

† Basic system software such as compilers, interpreters,

loaders, utilities, libraries, etc.

† An Orbix daemon, through which servers and clients of

Orbix distributed applications interact with one other.

The daemon is started up once, before the test suite starts

running.

† An interface repository, which stores all necessary

information about server interfaces. This information

can be retrieved by clients to construct and issue requests

for invoking operations on servers at run time.

What happens if multiple test cases are executed

simultaneously on the same computer? Can the sharing of

the above resources cause unwanted changes in their

behaviour?

The basic system software should cause no problem.

Each test case just uses its own copy of any compiler,

interpreter, loader, utility, or static (archive) library. As for

dynamic shared libraries, their simultaneous use by multiple

test cases should also cause no problem. This is simply

because a dynamic shared library is by definition a library

whose code can be safely shared by multiple, concurrently

running programs so that the programs share exactly one

physical copy of the library code, and do not require their

own copies of that code.

There further should be no problem with sharing one

physical copy of the Orbix daemon by multiple concurrently

running distributed applications. This is because that

sharing is just one of the core intrinsic features of the

Orbix daemon. Moreover, in terms of testing, simultaneous

execution of multiple distributed applications is even more

desirable than their serial execution as it provides more

realistic environment for functioning Orbix software.

Problems may occur if multiple concurrently running test

cases share the same interface repository. In order to specify

the problems, let us briefly outline how interfaces and

interface repositories may be used in the Orbix 3 test suite.

In order to stress object orientation of the CORBA

distributed programming technology, server components of

CORBA-based distributed applications are called server

objects or simply objects. The CORBA Interface Definition

Language (IDL) permits interfaces to objects to be defined

independent of an objects implementation. After defining an

interface in IDL, the interface definition is used as input to

an IDL compiler, which produces output that can be

compiled and linked with an object implementation and its

clients.

CORBA supports clients making requests to objects. The

requests consist of an operation, a target object, zero or

more parameters and an optional request context. A request

causes a service to be performed on behalf of a client, and

results of executing the request returned to the client. If an

abnormal condition occurs during execution of the request,

the exception is returned.

Interfaces can be used either statically or dynamically.

An interface is statically bound to an object when the name

of the object it is accessing is known at compile time. In this

case, the IDL compiler generates the necessary output to

compile and link to the object at compile time. In addition,

clients that need to discover an object at run time and

A. Lastovetsky / Information and Software Technology 47 (2005) 657–662658



Download English Version:

https://daneshyari.com/en/article/10366601

Download Persian Version:

https://daneshyari.com/article/10366601

Daneshyari.com

https://daneshyari.com/en/article/10366601
https://daneshyari.com/article/10366601
https://daneshyari.com

