
Automated software size estimation based on function points

using UML models

Aleš Živkovič*, Ivan Rozman, Marjan Heričko

Faculty of Electrical Engineering and Computer Science, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia

Received 6 December 2004; revised 21 February 2005; accepted 23 February 2005

Available online 23 May 2005

Abstract

A systematic approach to software size estimation is important for accurate project planning. In this paper, we will propose the unified

mapping of UML models into function points. The mapping is formally described to enable the automation of the counting procedure. Three

estimation levels are defined that correspond to the different abstraction levels of the software system. The level of abstraction influences an

estimate’s accuracy. Our research, based on a small data set, proved that accuracy increases with each subsequent abstraction level. Changes

to the FPA complexity tables for transactional functions will also be proposed in order to better quantify the characteristics of object-oriented

software.

q 2005 Elsevier B.V. All rights reserved.

Keywords: Function points; Software size measure; Project planning

1. Introduction

The focus of scientific research regarding object devel-

opment and component-based development has already

shifted from implementation to earlier development activi-

ties in software and information system development.

Additionally, emphasis has also been placed on all aspects

of software development that have been investigated in

the context of structured techniques, from executable

specifications, testing strategies to estimation models and

metrics. In this paper, we will focus on one metric only:

the size estimation metric for object-oriented development.

Software size contains important information for project

planning. Costs and schedule estimates depend on its

existence and its accuracy; indirectly the project’s success

also depends on it. A software project is successful, if

the requirements are fulfilled and no budget or deadline

overflows occur [25]. With systematic size estimation,

the risk of overflows is lower. Systematic software

size estimation requires a method that defines a

procedure for measurement, involving units and accuracy.

In general, Functional Size Measurement (FSM) methods,

as defined in ISO/IEC TR 14143 [12–15] can be categorized

into two groups. In the first group, there are technology-

independent methods; an example would be the Function

Point Analysis (FPA) method [10]. In the second group,

there are technology-dependent methods; for example Lines

of Code (LOC) or number of classes. The methods from the

first group have obvious advantages over the methods from

the second group. The ultimate goal is to use only

technology-independent methods. The FPA method dates

back to 1979 [2] and has been updated several times.

However, the core concepts and the counting procedure

remains the same. Every information system processes

some data that can be stored in the application database or is

taken from external applications. Four operations are

performed on data records: create, read, update and delete.

Besides that, information systems use several query

functions for data retrieval and report construction. Each

record consists of several fields of basic data types or

another record that can be further deconstructed. The FPA

method quantifies: the number of fields in each record,

the distinct operations performed on these records, and

the number of these operations that are necessary to

perform a business function. The sum over all business

functions, multiplied with some empirically determined

weights, represents the unadjusted function points value.

Information and Software Technology 47 (2005) 881–890

www.elsevier.com/locate/infsof

0950-5849/$ - see front matter q 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2005.02.008

* Corresponding author. Tel.: C386 2 235 5115.

E-mail address: ales.zivkovic@uni-mb.si (A. Živkovič).

http://www.elsevier.com/locate/infsof


The final calculation is made using a Value Adjustment

Factor (VAF) that measures system complexity. Based on

the FPA method, several methods like Feature Points, Full

Function Points, Function Weight, Function Bang, Mk II

Function Points Analysis, COSMIC-FFP and NESMA

evolved. A detailed comparison of the selected methods

can be found in Ref. [33].

Although the methods are technology-independent, their

use in object development is quite difficult. Methods use

their own abstraction to represent a software system in a

convenient way, so as to perform size count. In object

development, the Unified Modeling Language (UML) is

used to represent the software system as an abstraction. To

overcome the gap between these two abstractions, the

mapping that transforms the elements used in one abstrac-

tion to the elements of the other abstraction, has to be

defined. This paper focuses on OO-to-FPA mappings. With

OO-to-FPA mapping defined, the late analysis and design

size estimation problem is solved, however the estimation

cannot always be applied early in a software development

process. To perform an early estimate, historical data are

needed to fulfill the missing information with some

statistical function. The fact is that the early estimates are

far more valuable than the estimates in design time, but

difficult to acquire in desired accuracy. In our approach, the

statistical approach is used.

This paper is divided into five sections. In Section 2, the

importance of size estimation is emphasized, the FPA

method is briefly described, and a detailed review of the

literature is given. In Section 3, different OO-to-FPA

mappings are described and compared. Based on the results,

a new, unified OO-to-FPA mapping is proposed in Section

4, together with several additional improvements that

address current size estimation problems. The problem of

inaccuracy in early estimates is addressed with the aid of

different estimation levels. Section 5 summarizes the results

of the improvements that were introduced into the size

estimation process for object-oriented projects and also

discusses further improvements.

2. Related work

The research community found several problems related

to the FPA method. These problems can be grouped together

by their research area:

1. Correlation between FPA elements [17,18,20].

2. Inappropriate formulation of the VAF and the General

System Characteristic (GSC) [21].

3. Informal definition and violation of monotony [1,6,7].

4. The gap between OO and FPA abstractions [3–5,8,

27,31].

Lokan [20] analyzed 269 projects and tried to discover

the correlation between five elements used in the FPA

method to represent a software system. He found out that

external inputs (EI) and internal logical files (ILF) always

correlate, while external interface files (EIF) rarely correlate

with other elements.

Another paper [21] analyzed 235 projects with an

emphasis on GSC. The research was divided into two

parts. In the first part, Lokan proved that GSC is out-of-date

and not appropriate for today’s systems. In the second part,

he used empirical analysis to show that 14 technical factors

were not independent and expressed overlapping character-

istics. Therefore, the smaller set could be used instead. The

research also showed that VAF improved the estimated size

in less than half of all cases.

All methods for software size estimation lack adequate

formal foundations in their origin descriptions. There

were some attempts [6,7] to add formality to functional

size measurement. Fetcke’s model is applicable to

different methods, since it introduced an additional

level of abstraction, called a data-oriented abstraction.

The approach proposed by Diab et al. was designated

COSMIC-FPP [35] and had a specific purpose. In our

research, the model defined by Fetcke is used as a basis

and further refined by the definition of a mapping

function [33]. The abstraction is also used to formally

describe an OO-to-FPA transformation, as proposed in

this paper.

The violation of monotony first addressed in MK II

FPA [30], later formally proven by Fetcke [6] and again

addressed in research [1] resulted in a change in

complexity weights. Since our research also resulted in

a change of complexity tables different from the one

proposed by Al-Hajri et al. [1], this approach is

discussed in more detail. In Al-Hajri’s research, tables

gathered with the training methods from neural networks

replaced the original complexity tables. The results

showed that the average error decreased and the

convergence between actual effort and estimated effort

improved. The authors extended complexity tables and

related ordinal scales with absolute ones. However, the

new tables are not appropriate for our research, since we

deal with object-oriented systems that have specific

characteristics. These characteristics will be presented

in Section 3. We believe that Al-Hajri’s approach could

also be used to further improve our tables. Unfortunately,

at the moment there is not enough empirical data

available in the ISBSG repository [11] to apply his

procedure of weights validation.

3. OO-to-FPA mappings

3.1. Method proposed by Fetcke et al.

Fetcke et al. [8] focused their research on a specific

method, namely object-oriented software engineering

A. Živkovič et al. / Information and Software Technology 47 (2005) 881–890882



Download	English	Version:

https://daneshyari.com/en/article/10366678

Download	Persian	Version:

https://daneshyari.com/article/10366678

Daneshyari.com

https://daneshyari.com/en/article/10366678
https://daneshyari.com/article/10366678
https://daneshyari.com/

