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Abstract

The quality of arithmetic implementation is of concern to all who work with or depend on the results of numerical computations.

Embedded systems have become enormously complicated and widespread in most if not all consumer devices in recent years so there is a

clear need to measure the quality of the arithmetic in the same way that conventional systems have been measured for some time using

programs such as the well-known paranoia. A new version of paranoia has been introduced specifically to extend the domain of testable

systems to embedded control systems. This paper describes the development of ESP (Embedded System Paranoia) and gives example outputs

and free download sites. The example outputs indicate that even today, the quality of arithmetic implementations cannot be taken for granted

with numerous implementation problems being reported in those embedded environments tried so far.
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1. Introduction

The reliable implementation of a numerical algorithm

depends fundamentally on the underlying quality of the

arithmetic implementation. Unfortunately, there are many

examples of significant failures in implementation over

the years. For example, a version of the CDC Fortran

compiler reported 1.0—1.0 as being less than, equal to

and greater than zero simultaneously [12]. Naturally such

deviations make life hard for the algorithmic programmer

and the problem has been addressed successfully by a

number of authors over the years [2,8,10] as a result of

which effective standardised approaches have appeared

[5,6]. These together with tools for diagnosing arithmetic

problems have led to a gradual improvement in the

quality of implementation of arithmetic such that today in

general purpose systems, arithmetic quality is usually

quite good, although there still remain significant

concerns [9].

Perhaps the greatest concerns today are, however,

associated with embedded control systems. Such tools as

have appeared with the goal of diagnosing arithmetic

implementation problems, have not in general been

available for such systems and the average quality of

arithmetic implementations for this environment therefore

remains unknown.

Embedded control systems are of course at the heart of

modern electronic system development. Twenty years ago,

an embedded control system might have contained 2K of

ROM, a simple 4 bit CPU such as the 74181 and be entirely

coded in machine code. In general they controlled very

simple devices and few demands were placed on them to

implement high quality arithmetic. Today, things are

completely different. Embedded control systems are in

just about every consumer product from an electric toaster

to an automobile. Not only that but the systems are as

sophisticated as general purpose systems with in some

cases, many megabytes of RAM, IDE discs, high end 32 bit

microprocessors and are required to solve complex

algorithms in real time such as coupled differential

equations. Such systems are commonly programmed in C

and can constitute millions of lines of code. Consequently,
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the demands on the arithmetic system are as high as in

general purpose systems and the distinction between the two

types of system becomes increasingly more blurred each

year.

After a review of previous tools designed to measure

arithmetic quality, the steps necessary to re-structure

paranoia will be described, a sample output shown and the

results of running the re-structured program on a number of

different systems will be tabulated. A discussion of the role

of extended precision computation will follow and some

conclusions noted.

2. Tools for measuring arithmetic quality

A number of tools of greater or lesser sophistication have

emerged over the years with the object of measuring

arithmetic quality in some way. These vary from simply

diagnosing important properties of the implementation such

as the radix to tools capable of diagnosing a much wider

class of problems.

2.1. machar

machar is an implementation of work originally done by

[2] a C implementation of which appears in [11]. Its primary

function is to discover properties of a particular arithmetic

implementation normally hidden from the user, for example

(using the nomenclature described by [11] with IEEE

compliant values in brackets [5]),

† ibeta, the radix in which numbers are represented (2,10).

(This is Radix in the ESP source code.)

† it, the number of digits in the base of the radix used to

represent the floating point mantissa (24 in single

precision). (This is Precision in the ESP source code.)

† machep, which is the exponent of the smallest power of

ibeta such that 1.0Cibetamacheps1.0, (K23). (This is U2

in the ESP source code.)

† eps, commonly referred to as the ‘floating point

precision’, ibetamachep (1.19!10K7).

† negep, which is the exponent of the smallest power of

ibeta such that 1.0Kibetanegeps1.0, (K24). (This is U1

in the ESP source code.)

† epsneg ibetanegep, (5.96!10K8) another way of defining

floating point precision and usually 0.5 times eps.

† iexp is the number of bits in the exponent including the

sign, (8).

† minexp the smallest power of ibeta consistent with no

leading zeroes in the mantissa, (K126).

† xmin is ibetaminexp, (1.18!10K38) the smallest useable

floating value.

† maxexp the smallest Cve power of ibeta that causes

overflow, (128).

† xmax is (1.0Kepsneg)!ibetamaxexp, (3.4!1038), the

largest useable floating value.

† irnd, the round-off code. In the IEEE standard, bit

patterns correspond to ‘representable’ values. The idea is

that in any arithmetic operation with two operands,

addition say, the bit patterns are added ‘exactly’ and then

rounded to the nearest representable number. If this is

exactly half-way, the low order bit zero value is used. If

irnd returns as 2 or 5, rounding complies with IEEE. If it

is 2 or 4, non-standard rounding is taking place and if

irnd is 0 or 3, truncation is taking place which is not

desirable. irnd also describes underflow. In IEEE,

underflow is handled by freezing the exponent at the

smallest allowed value whilst the mantissa gradually

acquires leading zeroes, ‘gracefully’ losing precision.

Other implementations might simply truncate to zero.

† ngrd is the number of guard digits used when truncating

the product of two mantissae to fit the representation.

2.2. paranoia

paranoia is somewhat different and goes beyond machar

[1,2]. Both paranoia and machar try to establish the radix,

precision and range (over/underflow thresholds) of the

arithmetic but paranoia goes beyond machar in looking for a

wider class of pathologies. In its original form, it is

implemented as a series of 29 milestones (reporting points)

and tests which included the following amongst a large

selection:

† Basic tests on arithmetic operations on small numbers.

Examples include the following:

– 1*2Z2, 2*1Z2, 2/1Z2, 2C1Z3 and a number of

similar operations.

– (K1)C(K1)*(K1)Z0 and a number of tests of

commutativity.

† Consistency of comparison generally. This can have

important ramifications for many algorithms as the

comparison of floating point numbers is responsible for

a number of well-known failures [3]. The following are

all amongst a wide range of such tests:

– 0C0Z0

– (2C2)/2Z2

– XZ1 but XK1/2K1/2!Z0.

– Non-normalised subtraction such as XZY, XCZ!Z
YCZ

– (XKY)C(YKX) is non-zero.

† Underflow behaviour.

† Overflow behaviour.

† Presence of guard digits.

† Tests of square root and powers with particular emphasis

on suitability for financial calculations.

† Behaviour with Inf(1/0) and NaN(0/0). The IEEE

standards provides for bit patterns which indicate when

an operation is pathological in some sense. NaNs (Not a

Number) come in two forms, signalling (exceptions are

indicated) and quiet.

† Compatibility with the IEEE 754/854 standards.
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