Information and Software Technology xxx (2014) XXX—-XXX

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Understanding the attitudes, knowledge sharing behaviors and task
performance of core developers: A longitudinal study

Sherlock A. Licorish *, Stephen G. MacDonell

Department of Information Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand

ARTICLE INFO ABSTRACT

Article history:

Received 30 March 2013

Received in revised form 13 January 2014
Accepted 11 February 2014

Available online xxxx

Context: Prior research has established that a few individuals generally dominate project communication
and source code changes during software development. Moreover, this pattern has been found to exist
irrespective of task assignments at project initiation.
Objective: While this phenomenon has been noted, prior research has not sought to understand these
dominant individuals. Previous work considering the effect of team structures on team performance
has found that core communicators are the gatekeepers of their teams’ knowledge, and the performance
of these members was correlated with their teams’ success. Building on this work, we have employed a
longitudinal approach to study the way core developers’ attitudes, knowledge sharing behaviors and task
performance change over the course of their project, based on the analysis of repository data.
Method: We first used social network analysis (SNA) and standard statistical analysis techniques to iden-
tify and select artifacts from ten different software development teams. These procedures were also used
to select central practitioners among these teams. We then applied psycholinguistic analysis and directed
content analysis (CA) techniques to interpret the content of these practitioners’ messages. Finally, we
inspected these core developers’ activities as recorded in system change logs at various points in time
during systems’ development.
Results: Among our findings, we observe that core developers’ attitudes and knowledge sharing behav-
iors were linked to their involvement in actual software development and the demands of their wider
project teams. However, core developers appeared to naturally possess high levels of insightful charac-
teristics, which became evident very early during teamwork.
Conclusions: Project performance would likely benefit from strategies aimed at surrounding core devel-
opers with other competent communicators. Core developers should also be supported by a wider team
who are willing to ask questions and challenge their ideas. Finally, the availability of adequate commu-
nication channels would help with maintaining positive team climate, and this is likely to mitigate the
negative effects of distance during distributed developments.

© 2014 Elsevier B.V. All rights reserved.

Keywords:

Core developers
Psycholinguistics
Content analysis
Attitudes
Knowledge sharing
Task performance

1. Introduction

Previous research has established that a few individuals in a
team generally dominate project communication and source code
changes during software development [1-4]. Evidence has also
shown that, even in environments with fixed task assignments,
specific individuals circumvent these pre-set arrangements to oc-
cupy the center of their teams’ activities [5]. Such patterns have
been studied previously in other disciplines [6,7], and early works
investigating the effect of this phenomenon have shown that the

* Corresponding author. Tel.: +64 3 479 8316; fax: +64 3 479 8311.
E-mail addresses: sherlocklicorish@otago.ac.nz (S.A. Licorish), stephen.
macdonell@otago.ac.nz (S.G. MacDonell).

http://dx.doi.org/10.1016/j.infsof.2014.02.004
0950-5849/© 2014 Elsevier B.V. All rights reserved.

existence of these centralized patterns involving core group mem-
bers is a positive sign for team performance [8]. In similarly semi-
nal work, Leavitt established that central individuals are vital to
their teams’ performance as they coordinate information flow.
Central individuals are also seen as project leaders, whether or
not they are the formal or nominal leaders [9], and groups with
central coordinators experience higher levels of group organization
and task performance (in terms of speed when completing tasks)
[8].

While there is therefore strong interest in identifying patterns
within software teams’ communication and coordination practices,
there has been comparatively little effort directed toward under-
standing why these patterns exist or how they emerge. Questions
related to how core members share knowledge over their project,

Please cite this article in press as: S.A. Licorish, S.G. MacDonell, Understanding the attitudes, knowledge sharing behaviors and task performance of core
developers: A longitudinal study, Inform. Softw. Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.02.004

http://dx.doi.org/10.1016/j.infsof.2014.02.004
mailto:sherlock.licorish@otago.ac.nz
mailto:stephen. macdonell@otago.ac.nz
mailto:stephen. macdonell@otago.ac.nz
http://dx.doi.org/10.1016/j.infsof.2014.02.004
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof
http://dx.doi.org/10.1016/j.infsof.2014.02.004

2 S.A. Licorish, S.G. MacDonell / Information and Software Technology xxx (2014) xxX-Xxxx

the initial arrangements that lead to core members becoming hubs
in their teams, and how the attitudes and traits these practitioners
exhibit might be linked to their involvement in task changes, have
not been answered. Such explorations could provide insights into
the peculiarities of software team dynamics, inform appropriate
team configurations, and enable the early identification of ‘soft-
ware gems’ — exceptional practitioners in terms of both task and
team performance.

In previous work we used psycholinguistics and content analy-
sis techniques to study the roles and behaviors of core developers
and uncovered that these practitioners worked across multiple
roles, and were indeed crucial to their teams’ organizational, in-
tra-personal and inter-personal processes [10]. Additionally, we
noted that although these individuals were highly task- and
achievement-focused, they were also largely responsible for main-
taining positive team atmosphere [10]. While we established that
core developers exhibited significantly different attitudes and
behaviors to their ‘regular’ counterparts during team work, this
prior study took a static, single snapshot view of the software pro-
ject teams considered. Additionally, our goal in that prior work was
primarily to examine if core developers behaved differently to their
less active counterparts.

In building on that work we now answer the questions noted
above in this paper. In the current work we employ a multi-stage
approach to study the ways in which core developers’ attitudes
and knowledge sharing behaviors change over time. In order to
do so we examine actual software artifacts as against the more fre-
quent use of surveys and interviews [11]. Our analysis was con-
ducted in several steps, described in detail in Section 3. Briefly, in
the first step repository data was mined and artifacts from multiple
software development teams were explored using social network
analysis (SNA) and standard statistical techniques. This enabled
us to select our cases and to detect patterns around core develop-
ers, and so informed the design of the later steps involving deeper
linguistic analysis techniques and directed content analysis (CA).

Our work makes several contributions. In terms of methodolog-
ical contribution, we demonstrate the value of employing contex-
tual analysis techniques to understand internal software team
processes. We extend software engineering (SE) theory and explain
how and why core developers become knowledge hubs, we pro-
vide understandings for the way core developers’ attitudes and
knowledge sharing behaviors are linked to their involvement in
software tasks, and we outline several avenues for future research.
We also provide recommendations for software project governance
and show how the outcomes of our work have implications for
team strategies. Finally, we provide suggestions for the enhance-
ment of collaboration and process support tools.

In the next section (Section 2) we present our theoretical back-
ground and survey related works; this leads to our specific re-
search questions. We then provide details of our research setting
and measures in Section 3, introducing our techniques and proce-
dures in this section. In Section 4 we present our results and we
analyze and discuss our findings. Section 5 outlines the implica-
tions of our results, and in Section 6 we consider our study’s limi-
tations. Finally, in Section 7 we draw our conclusions.

2. The study of team communication

Previous work has established that the intricacies of team
dynamics can be revealed by studying members’ communication
[12]. Research has also uncovered linkages between informal hier-
archical communication structures and team performance for geo-
graphically distributed teams [13]. Furthermore, team
communication has been linked to coordination efficiency [14]
and the quality of software output [15]. Thus, studying the details

in team communication can provide valuable insights into the hu-
man processes involved during software development, including
the reasons for, and consequences of, communication and coordi-
nation actions.

Given this, software repositories and software history data have
emerged as valuable sources of interaction and communication
evidence [16]. Research findings drawn from works examining
such sources are particularly valid if the data represents the pri-
mary means of interaction and so captures team processes during
software development [10]. Accordingly, previous researchers have
exploited process artifacts such as electronic messages, change re-
quest histories, bug logs and blogs to provide unique perspectives
on the activities occurring during the software development pro-
cess [3,17]. In particular, open source software (OSS) repositories
and archives recording software developers’ textual communica-
tion activities have increasingly provided researchers with oppor-
tunities to study software practitioners’ behaviors [18,19].

For instance, Abreu and Premraj [20] analyzed the Eclipse mail-
ing list and found that increases in communication intensity coin-
cided with higher numbers of bug-introducing changes, and that
developers communicated most frequently at release and integra-
tion time. Bird et al. [4] employed clustering algorithms to study
CVS records and mailing lists and concluded that the more soft-
ware development an individual does the more coordination and
controlling activities they must undertake. These observations
are supported by Cataldo et al. [3], whose SNA study found that
central individuals contributed the most during software develop-
ment. The Debian mailing list was used by Sowe et al. [21] to ob-
serve knowledge sharing among developers. These authors found
that no specific individual dominated knowledge sharing activities
in the Debian project.

Works such as those of Bacchelli et al. [22] and Antoniol et al.
[23] have used rather more complex techniques to analyze email
and bug description information. In linking email communications
to changes in source code using regular expressions and other
information retrieval approaches, Bacchelli et al. [22] found that
the analysis approach using regular expressions in emails outper-
formed more complex probabilistic and vector space models.
Through the use of decision trees, naive Bayes classifiers and logis-
tic regression, Antoniol et al. [23] were also able to classify bugs
based on specific terms used in the textual descriptions of such
tasks.

In reviewing these two streams of work, it is evident that some
researchers have looked to infer the semantics of practitioners’ dia-
logues from the text they communicated (e.g., [22,23]), while oth-
ers have provided deductions based on communication frequency
information [4,20]. While text analysis methods and their associ-
ated tools have been used previously to understand and predict
some aspects of software development [24,25], only a few studies
in this domain have considered examining software teams’ internal
behavioral processes as represented in their members’ textual
communications. This is in spite of the fact, as noted by Bacchelli
et al. [22], that natural language analysis techniques have proved
to be effective in generating understandings of software develop-
ers’ attitudes when applied to their language processes.

For instance, in analyzing the communication of the developers
involved in the Apache project, Rigby and Hassan [12] uncovered
that once the two most active developers signaled their intentions
to leave the project their communications became more negative
and instructive, they spoke mostly in the future tense, and they
communicated with less positive emotions, when compared to
their earlier communications. In our own work examining three
different IBM Rational Jazz project teams we also found slight vari-
ances in behaviors among those undertaking different forms of
software task [25]. As noted in Section 1, as a first step to under-
standing the true role of active communicators, we used linguistic

Please cite this article in press as: S.A. Licorish, S.G. MacDonell, Understanding the attitudes, knowledge sharing behaviors and task performance of core
developers: A longitudinal study, Inform. Softw. Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.02.004

http://dx.doi.org/10.1016/j.infsof.2014.02.004

Download English Version:

hitps://daneshyari.com/en/article/10366749

Download Persian Version:

https://daneshyari.com/article/10366749

Daneshyari.com

https://daneshyari.com/en/article/10366749
https://daneshyari.com/article/10366749
https://daneshyari.com

