
Computing dynamic slices of concurrent object-oriented programs

Durga Prasad Mohapatra, Rajib Mall, Rajeev Kumar*

Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, WB 721 302, India

Received 8 November 2004; revised 9 February 2005; accepted 14 February 2005

Available online 1 June 2005

Abstract

We propose a novel dynamic program slicing technique for concurrent object-oriented programs. Our technique uses a Concurrent System

Dependence Graph (CSDG) as the intermediate program representation. We mark and unmark the edges in the CSDG appropriately as and

when the dependencies arise and cease during run-time. We mark an edge when its associated dependence exists and unmark an edge when

the dependence ceases to exist. Our approach eliminates the use of trace files. Another advantage of our approach is that when a request for a

slice is made, it is already available. This appreciably reduces the response time of slicing commands.

q 2005 Elsevier B.V. All rights reserved.

Keywords: Program slicing; Static slicing; Dynamic slicing; Program dependence graph; Debugging; Concurrent object-oriented programs; Threads

1. Introduction

Program slicing is a well known decomposition tech-

nique for extracting the statements of a program related to a

particular computation [1]. A slice of a program P can be

constructed with respect to a slicing criterion. A slicing

criterion is a tuple !s,VO where s is a program point of

interest and V is a subset of the program’s variables used or

defined at s. The slice can be obtained by deleting the

statements from the program P which have no effect on any

of the variables in V as execution reaches statement s. There

are two types of slices depending on the input to the

program: static slice and dynamic slice. A static slice of a

program P with respect to a slicing criterion !s,VO is the

set of all the statements of program P that might affect the

slicing criterion for every possible inputs to the program [1].

A static slice may contain some statements that might not be

executed during an actual run of a program. In contrast, a

dynamic slice contains only those statements of program P

that actually affect the slicing criterion for a particular set of

inputs to the program [2]. So, dynamic slices are usually

smaller than static slices. Program slicing has been found to

be useful in various software engineering activities like

debugging, program understanding, testing and mainten-

ance, measuring cohesion, etc. [3–9]. Comprehensive

surveys on the existing slicing techniques and their

applications can be found in [10–12].

Object-oriented concepts such as encapsulation, inheri-

tance, message passing and polymorphism, etc. make the

traditional slicing techniques, inadequate for use with

object-oriented programs. Researchers have extended

existing slicing techniques to handle some of these features.

Larson and Harrold [13] were the first to consider object-

orientation aspects in their work. They introduced the class

dependence graph which can represent a class hierarchy,

data members, inheritance and polymorphism. They have

constructed the system dependence graph (SDG) using the

class dependence graphs to satisfactorily represent object-

oriented programs. After the SDG is constructed, the two

phase algorithm of Horwitz et al. [14] is used with minor

modifications for computing slices. Larson and Harrold [13]

have reported only a static slicing technique for sequential

object-oriented programs, and did not address the con-

currency and dynamic slicing aspects. Zhao [15], Song and

Huynh [16], Wang et al. [17] and Xu and Chen [18] have

addressed the issues of dynamic slicing of object-oriented

programs, but they have not addressed the concurrency

issues in object-oriented programs.

The size and complexity of object-oriented programs are

increasing rapidly. This poses a formidable difficulty to

Information and Software Technology 47 (2005) 805–817

www.elsevier.com/locate/infsof

0950-5849/$ - see front matter q 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2005.02.002

* Corresponding author. Tel.: C91 3222 283 464; fax: C91 3222 278

985.

E-mail addresses: durga@cse.iitkgp.ernet.in (D.P. Mohapatra),

rajib@cse.iitkgp.ernet.in (R. Mall), rkumar@cse.iitkgp.ernet.in

(R. Kumar).

http://www.elsevier.com/locate/infsof


a programmer to either understand the working of a program

or debug an existing error. Efficient slicing techniques

would help in debugging and understanding these programs.

Many of the real life object-oriented programs are

concurrent which run on different machines connected to

a network. It is usually accepted that understanding and

debugging of concurrent object-oriented programs are much

harder compared to those of sequential programs. The non-

deterministic nature of concurrent programs, the lack of

global states, unsynchronized interactions among processes,

multiple threads of control and a dynamically varying

number of processes are some reasons for this difficulty. An

increasing amount of resources are being spent in debug-

ging, testing and maintaining these products. Slicing

techniques promise to come in handy at this point. However,

research results in slicing object-oriented programs have

scarcely been reported in the literature [13,19–24]. Further,

to our knowledge no research results addressing the problem

of dynamic slicing of concurrent object-oriented programs

have been published. It is the objective of this paper to

present our work concerning development of a dynamic

slicing algorithm for concurrent object-oriented programs.

A major goal of any dynamic slicing technique is

efficiency since the results may be used during interactive

applications such as program debugging. Efficiency is

especially an important concern for slicing concurrent

object-oriented programs, since their sizes are typically very

large. Large programs result in very large intermediate

graphs and can result in response times of several hundreds

of seconds.

With this motivation, in this paper we propose a new

dynamic slicing algorithm for computing slices of con-

current Java programs. Only the concurrency issues are

addressed here, traditional object-oriented features are not

discussed in this paper. Handling standard object-oriented

features can be found in [13]. So, these representations of

object-oriented features can easily be incorporated into our

algorithm. Our algorithm uses a modified form of the

program dependence graph (PDG) as the intermediate

representation. We have named this graph concurrent

system dependence graph (CSDG). We first statically

construct the CSDG [25]. Then, we apply our algorithm to

the CSDG to compute dynamic slices of concurrent object-

oriented programs. Our algorithm is based on marking and

unmarking the edges of the CSDG appropriately as and

when dependencies arise and cease at run-time. So, we have

named our algorithm marking-based dynamic slicing

(MBDS) algorithm for concurrent object-oriented pro-

grams. Such an approach is more time- and space-efficient

and also allows to completely to eliminate the use of a trace

file at run-time to record the execution history. In dynamic

slicing, it is desirable to eliminate the slow file I/O

operations that occur while accessing a trace file as these

make the response times unacceptably large in interactive

sessions. Another advantage of our approach is that when

a request for a slice is made, it is already available. This

appreciably reduces the response time of slicing commands.

The rest of the paper is organized as follows. In Section 2,

we present some basic concepts and definitions that will be

used in our algorithm. In Section 3, we discuss the

intermediate program representations: concurrent control

flow graph (CCFG) and concurrent system dependence

graph (CSDG). In Section 4, we present our marking-based

dynamic slicing (MBDS) algorithm for concurrent object-

oriented programs. In Section 5, we present a brief

description of a slicing tool we have developed to implement

our proposed dynamic slicing algorithm for concurrent

object-oriented programs. In Section 6, we compare our work

with related work. Section 7 concludes the paper.

2. Basic concepts and definitions

Before presenting our dynamic slicing algorithm, we

introduce a few definitions that would be used in our

algorithm. In the following definitions and throughout the

rest of the paper, we use the terms statement, node and

vertex interchangeably. We explain the definitions by using

Figs. 1 and 3. Fig. 1 represents an example concurrent Java

program and Fig. 3 represents the CSDG of the example

program of Fig. 1.

Definition 1. Precise Dynamic Slice. A dynamic slice is said

to be precise if it includes only those statements that

actually affect the value of a variable at a program point for

the given execution. However, this is only an informal

definition of a precise slice since the question as to whether

a statement should actually be included in a precise slice is

undecidable [1].

Definition 2. def(obj), defset(obj). Let obj be an object in a

class in the program P. A node x is said to be a def(obj) node

if x represents a definition (assignment) statement that

defines the object obj. The set defset(obj) denotes the set of

all def(obj) nodes.

In Fig. 3, nodes 2, 9 and 17 are the Def(a2) nodes and

Defset(a2)Z{2,9,17}.

Definition 3. use(obj) node. Let obj be an object in a class in

the program P. A node x is said to be a use(obj) node iff it

uses the object obj.

In Fig. 3, the node 4 is a use(a3) node and nodes 2, 6 and

12 are use(a2) nodes.

Definition 4. recentdef(obj). For each object obj, recentde-

f(obj) represents the node (the label number of the

statement) corresponding to the most recent definition of

the object obj.

Definition 5. Concurrent Control Flow Graph (CCFG). A

concurrent control flow graph (CCFG) G of a program P is

a directed graph (N, E, Start, Stop), where each node n2N

D.P. Mohapatra et al. / Information and Software Technology 47 (2005) 805–817806



Download English Version:

https://daneshyari.com/en/article/10366955

Download Persian Version:

https://daneshyari.com/article/10366955

Daneshyari.com

https://daneshyari.com/en/article/10366955
https://daneshyari.com/article/10366955
https://daneshyari.com

