
Model-based requirements verification method: Conclusions
from two controlled experiments

Daniel Aceituna a,1, Gursimran Walia a,2, Hyunsook Do a,3, Seok-Won Lee b,⇑
a Department of Computer Science, North Dakota State University, IACC 258, 2740, P.O. Box 6050, Fargo, ND 58108-6050, United States
b Department of Software Convergence Technology at Ajou University, San 5 Woncheon-dong, Youngtong-gu, Suwon-si, Gyeonggi-do 443-749, Republic of Korea

a r t i c l e i n f o

Article history:
Received 15 January 2013
Received in revised form 6 November 2013
Accepted 11 November 2013
Available online 22 November 2013

Keywords:
Requirements verification
Model-based verification
NLtoSTD
Fault checklist
Controlled experiments

a b s t r a c t

Context: Requirements engineering is one of the most important and critical phases in the software
development life cycle, and should be carefully performed to build high quality and reliable software.
However, requirements are typically gathered through various sources and are represented in natural
language (NL), making requirements engineering a difficult, fault prone, and a challenging task.
Objective: To ensure high-quality software, we need effective requirements verification methods that can
clearly handle and address inherently ambiguous nature of NL specifications. The objective of this paper
is to propose a method that can address the challenges with NL requirements verification and to evaluate
our proposed method through controlled experiments.
Method: We propose a model-based requirements verification method, called NLtoSTD, which trans-
forms NL requirements into a State Transition Diagram (STD) that can help to detect and to eliminate
ambiguities and incompleteness. The paper describes the NLtoSTD method to detect requirement faults,
thereby improving the quality of the requirements. To evaluate the NLtoSTD method, we conducted two
controlled experiments at North Dakota State University in which the participants employed the NLtoSTD
method and a traditional fault checklist during the inspection of requirement documents to identify the
ambiguities and incompleteness of the requirements.
Results: Two experiment results show that the NLtoSTD method can be more effective in exposing the
missing functionality and, in some cases, more ambiguous information than the fault-checklist method.
Our experiments also revealed areas of improvement that benefit the method’s applicability in the future.
Conclusion: We presented a new approach, NLtoSTD, to verify requirements documents and two con-
trolled experiments assessing our approach. The results are promising and have motivated the refine-
ment of the NLtoSTD method and future empirical evaluation.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Requirements verification is a process of determining whether
requirements specifications capture the desired features of the sys-
tem being built correctly. This process can be difficult because, typ-
ically, requirements are gathered through various sources and are
represented in natural language (NL) as a means of communication
between different stakeholders (i.e., both technical and non-tech-
nical). Requirements written in NL are prone to errors due to the
inherent imprecision, ambiguity, and vagueness of natural lan-
guage. Evidence suggests that if left undetected, these requirement

errors can cause major re-work during the later stages of software
development (i.e., during the implementation and testing phases).
Furthermore, finding and fixing problems earlier rather than later
is cheaper, and less expensive [7,36]. To ensure high-quality soft-
ware, successful organizations focus on identifying and correcting
problems in the software artifacts developed during the early
stages of the software-development lifecycle.

To ensure requirements quality, to date, researchers have devel-
oped various verification methods (Section 7 summarizes the re-
lated work.) for detecting and removing the early lifecycle faults
(i.e., mistakes recorded in the requirements and design documents
[6,8,10,16]) and have validated the methods through controlled
experiments and case studies (e.g., [9,11,21,26]). In particular, soft-
ware inspections, in which a team of skilled individuals review a
software work-product (e.g., a requirements document or a design
document) to identify faults, is an effective verification method.
Software inspections have been widely used to help developers
identify different types of early lifecycle faults. To aid developers

0950-5849/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.infsof.2013.11.004

⇑ Corresponding author. Tel.: +82 31 219 3548; fax: +82 31 219 1621.
E-mail addresses: daniel.aceituna@ndsu.edu (D. Aceituna), gursimran.walia@nd-

su.edu (G. Walia), hyunsook.do@ndsu.edu (H. Do), leesw@ajou.ac.kr (S.-W. Lee).
1 Tel.: +1 701 231 8562; fax: +1 701 231 8255.
2 Tel.: +1 701 231 8185; fax: +1 701 231 8255.
3 Tel.: +1 701 231 5856; fax: +1 701 231 8255.

Information and Software Technology 56 (2014) 321–334

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2013.11.004&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2013.11.004
mailto:daniel.aceituna@ndsu.edu
mailto:gursimran.walia@ndsu.edu
mailto:gursimran.walia@ndsu.edu
mailto:hyunsook.do@ndsu.edu
mailto:leesw@ajou.ac.kr
http://dx.doi.org/10.1016/j.infsof.2013.11.004
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


with detecting a larger number of faults during an inspection,
researchers have developed variants of Fagan’s inspection [16] that
range from an ad hoc inspection to a simple, fault-based checklist
to a more detailed, step wise abstraction of the artifact.

However, even when faithfully applying these methods, it is
estimated that 40–50% of development effort is still spent fixing
problems that should have been corrected early in the lifecycle
[7]. Much of this rework is the result of the fact that inspection
methods rely on the inspectors’ abilities to understand the require-
ments, and often, their interpretations are different from what the
requirement developers intended. Because of the flexibility and
inherently ambiguous nature of NL specifications, inspectors can
have different interpretations of the same requirements without
noticing the ambiguities and inconsistencies. Further, as the size
of the requirement document grows, this tendency also increases.

Model-based approaches [2,19,20,24] can detect such faults
more easily because, when the requirements are modeled or
checked with formal methods, the properties, such as inconsisten-
cies and ambiguities, are clearly addressed and handled. For this
reason, many researchers have utilized model-based approaches
for verifying NL specifications.

While model-based approaches provide a systematic way to
identify inconsistent and incomplete requirements, building mod-
els often requires NL translation, and this translation process can
be highly subjective because stakeholders can interpret NL require-
ments differently [5,17]. An erroneous translation of NL require-
ments can result in the wrong model and, thus, can eventually
produce software that stakeholders do not want. To alleviate the
problem with the erroneous translation, several researchers have
proposed modeling techniques using an automated NL translation
approach [4,13,15,22]. Automation can certainly reduce human er-
rors and improve the translation process, but complete and error-
free automation of this process is not possible because, often, NL
requirements can be interpreted in multiple ways; therefore, hu-
man judgment can inevitably lead to various correct and sensible
interpretations.

To address these problems with manual inspection methods
and model-based methods, we propose a new method that trans-
lates NL requirements into a State Transition Diagram (STD) in
an incremental manner (hereafter referred to as NLtoSTD) and al-
lows requirement engineers and other stakeholders to participate
in the translation process. This approach can correct and refine
requirements during the translation process by identifying ambi-
guities and incompleteness in the NL requirements.

The NLtoSTD method provides a means of exposing faults in a
set of NL requirements while transforming the requirements into
an STD. While the requirement faults have also been explored by
other approaches [25,30], our method differs from the existing
techniques in that the direct mapping from NL to an STD model
is preserved in the translation process. Each NL requirement be-
comes a segment of the STD, resulting in a direct mapping between
the requirements and the STD. This means that any adjustments or
changes made to the STD can be directly traced back to the require-
ments, and vice versa. (A detailed example of this process is shown
in Section 2.2.)

To investigate the feasibility and applicability of our approach,
we designed and conducted two controlled experiments which
evaluated the user’s fault-detection ability during the translation
of NL requirements (contained in different requirement docu-
ments) into the building blocks (or segments) of the STD. These
experiments validated the use of translating NL requirements into
STD segments as an effective requirements verification method.
Our results showed that the proposed method can be improved
to make it more effective in exposing the missing functionality
and ambiguous information in NL requirements when compared
to a fault-checklist method.

1.1. Our contribution

This paper is substantially expanded from the previous pub-
lished results [37], and the new contributions are highlighted as
follows:

(1) Using more extensive universe of data: This paper reports the
results from a second experiment that used the improved
NLtoSTD-BB method (based on the lessons learned from
the first experiment) and was designed to address the valid-
ity threats unaddressed in the first experiment. Further, we
also included new data analysis from the first experiment
that has not been reported elsewhere.

(2) Stronger findings: We integrated the results of the Data Sets
(of different subjects and requirement artifacts) from both
the experiments to draw more general conclusions and com-
pared findings against previous findings.

(3) Additional insights and Future research directions: We also dis-
cuss the further improvement of the latest version of the
NLtoSTD-BB (that was used in the second experiment) to
highlight the strengths and limitations of the NLtoSTD-BB
method during the inspection of NL requirement documents.

(4) Through the experimental results, we were able to highlight
the promise of using NLtoSTD-BB as a requirements verifica-
tion method that is more effective in detecting requirements
faults than the traditional inspection method. Our method
preserves the direct mapping from requirements to the
model during the translation process, which supports trace-
ability between two software artifacts (requirements and
the model). Our method allows both technical and non-tech-
nical stakeholders participate in the requirement verifica-
tion process.

The rest of the paper is organized as follows. Section 2 describes
our NLtoSTD approach in detail, and Section 3 provides the exper-
imental framework used to evaluate our research approach. Sec-
tions 4 and 5 present our two experiments, including the design,
threats to validity, data and analysis, and result interpretation. Sec-
tion 6 discusses the results we observed from the two experiments
and the practical implications. Section 7 discusses related work. Fi-
nally, Section 8 presents conclusions and discusses possible future
work.

2. NLtoSTD method

This section explains the NLtoSTD method and describes the
application of the NLtoSTD-BB on a set of example NL require-
ments for detecting faults.

2.1. Basic concepts underlying the NLtoSTD method

The rationale behind developing the NLtoSTD method was to be
able to translate NL requirements into a formalized form, which
can facilitate exposing incompleteness and ambiguities in the ori-
ginal NL requirements. An STD is a formal description of the sys-
tem-to-be behavior, and that it can be decomposed into building
blocks (BBs) that make up the STD. Assume that a complete and
unambiguous STD exists, that means each BB (that makes up the
STD) is also complete and unambiguous. This indicates that com-
plete and unambiguous STD-BBs represent a set of NL require-
ments (that were translated into BBs) that do not contain faults.

The NLtoSTD method consists of two steps. The first step in-
cludes the translation of NL requirements into STD-BBs (thereby
referred to as NLtoSTD-BB) and the second step includes the con-
struction of an STD using the STD-BBs (referred as STD-BBtoSTD).

322 D. Aceituna et al. / Information and Software Technology 56 (2014) 321–334



Download English Version:

https://daneshyari.com/en/article/10367081

Download Persian Version:

https://daneshyari.com/article/10367081

Daneshyari.com

https://daneshyari.com/en/article/10367081
https://daneshyari.com/article/10367081
https://daneshyari.com

