
Semantic-based automatic service composition with functional and
non-functional requirements in design time: A genetic algorithm
approach

Yong-Yi FanJiang a,⇑, Yang Syu b

a Department of Computer Science and Information Engineering, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City 24205, Taiwan, ROC
b Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei City, Taiwan, ROC

a r t i c l e i n f o

Article history:
Received 5 March 2013
Received in revised form 2 December 2013
Accepted 2 December 2013
Available online 14 December 2013

Keywords:
Service composition
Semantic web
Quality of service
Transaction
Genetic algorithm

a b s t r a c t

Context: In recent years, the composition of ready-made and loosely coupled services into desired sys-
tems is a common industrial approach and a widely followed research topic in academia. In the field,
the current research trend is to automate this composition; however, each of the existing efforts auto-
mates only a component of the entire problem. Therefore, a real automation process that addresses all
composition concerns is lacking.
Objective: The objective is to first identify the present composition concerns and subsequently to devise a
compositional approach that covers all concerns. Ultimately, we conduct a number of experiments to
investigate the proposed approach.
Method: We identify the current composition concerns by surveying and briefly describing the existing
approaches. To include all of the identified concerns, the solution space that must be searched is highly
dimensioned. Thus, we adopt a genetic algorithm (GA) due to its ability to solve problems with such char-
acteristics. Proposed GA-based approach is designed with four unusual independent fitness functions.
Additionally, experiments are carried out and discussions are presented for verification of the design,
including the necessity for and correctness of the independence and priority of the four fitness functions.
Results: The case studies demonstrate that our approach can automatically generate the required com-
posite services and considers all identified concerns simultaneously. The results confirm the need for
the independence of the fitness function and also identify a more efficient priority for these functions.
Conclusions: In this study, we present an all-inclusive automatic composer that does not require human
intervention and effort during the composition process and is designed for users who must address mul-
tiple composition concerns simultaneously, including requirements for overall functionality, internally
workable dataflow, and non-functional transaction and quality-of-service considerations. Such multiple
and complex composition requirements cannot be satisfied by any of the previous single-concern
composition approaches.

Crown Copyright � 2013 Published by Elsevier B.V. All rights reserved.

1. Introduction

Currently, one of the most promising, popular, and widely fol-
lowed software development paradigms is service-oriented archi-
tecture (SOA), which advocates reusing the existing loosely
coupled and network-accessible services provided by professional
organizations to quickly compose on-demand service-based sys-
tems rather than programming new systems from scratch to sat-
isfy customers [1,2]. Several approaches to implementing SOA
exist, but the most common and famous approach is delivered
via web services (WSs) technology [3], which depends on the
World Wide Web’s infrastructure and uses open XML standards

(e.g., SOAP, WSDL). Another benefit of WSs is the interoperability
that can cross boundaries between different organizations or het-
erogeneous units [4].

Under SOA, a service that exactly meets the requirement must
be found (Service Discovery) to satisfy the requirements of a ser-
vice with certain functional and non-functional properties. If such
a single service does not exist, the service integrator (in this study,
a more intuitive term is service composer, as used in [5]) must
choose the appropriate services and compose them into a value-
added composite web service (CWS) to fulfill the requirements.
In general, a situation in which a requirement for service can be
directly satisfied by a single service is quite rare because the
functionality of a service is always limited (fine-grained) [6] for
better reusability. Hence, in most cases, the composition of services
is inevitable.

0950-5849/$ - see front matter Crown Copyright � 2013 Published by Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.infsof.2013.12.001

⇑ Corresponding author. Tel.: +886 2 29052444; fax: +886 2 29023550.
E-mail address: yyfanj@csie.fju.edu.tw (Y.-Y. FanJiang).

Information and Software Technology 56 (2014) 352–373

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2013.12.001&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2013.12.001
mailto:yyfanj@csie.fju.edu.tw
http://dx.doi.org/10.1016/j.infsof.2013.12.001
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


Many services are currently available on the web or in certain
repositories, and the total number of these services is continually
increasing [7], which raises the complexity of composition [8].
The cost and effort involved in manual composition of an intended
CWS is sufficiently higher than that of automation [9]. In addition,
the difference in reasonable cost and effort between manual hand-
craft and automation is particularly magnified in cases in which
the requirement for service (composition) is frequently requested
or changed. Thus, an urgent need exists for techniques that can
compose services automatically, thus reducing the cost and effort.

According to our investigation, the topic that addresses
this technique is classified as ‘‘automatic service composition’’.
This topic focuses on how to use the existing and available
services offered by various organizations with different features,
including functional (i.e., booking, payment) and non-functional
(i.e., quality-of-service (QoS) requirements, such as response
time and availability) as well as behavioral transaction property
(TP, i.e., retry-able or compensatable) perspectives, to quickly
compose workable service-based applications or software (CWSs)
that satisfies requirements that cannot be fulfilled by any single
service. In this manner, the cost and effort needed to develop soft-
ware or applications will be significantly reduced, thus enhancing
the competition for the advocators of SOA.

Generally, the life cycle of a CWS includes three stages: (1) de-
sign, (2) runtime and monitoring, and (3) re-engineering [10]. The
first stage of design is used to identify the concrete specifications of
the CWSs. The runtime and monitoring stage addresses the execu-
tion of the CWSs and also detects violations and errors that emerge
during this stage. Finally, the re-engineering stage revises the spec-
ifications of the CWSs depending on information gained from stage
2. This process is rather static, and more dynamic approaches (e.g.,
[1]) are able to revise the CWSs immediately at stage 2 (dynamic
binding) using certain automations or mechanisms.

In this paper, we address the design stage. The entire design
stage can be further divided into three steps [9]: (1) construction
of the CWS workflows (known as planning in [9]) in which each
workflow consists of non-executable abstract activities; (2) discov-
ery of proper candidate services for each abstract activity; and (3)
selection of the fittest service for each abstract activity from all of
the candidate services discovered in the previous step. Initially,
the requirement for service includes a description of the desired
functionality and non-functional features and the impossibility of
satisfying the requirement with a single service. Based on the
requirement, a service composer (integrator) must manually (or
semi-automatically) generate a workflow, which is a logically or-
dered set of activities, to provide an abstract plan that exactly meets
the requirement. Thus far, each activity in the generated plan is still
an abstract functional unit (abstract service [11]) instead of a truly
executable service (concrete service [11]). Next, the composition
process enters step 2, or service discovery, which involves discover-
ing the appropriate and concrete candidate services for each ab-
stract activity in the generated plan [9]. In this step, the discovery
primarily involves functional matchmaking between concrete ser-
vices and abstract activities (e.g., to identify, classify, or cluster
qualified concrete services with the input–output (IO) specification
required by an activity). According to our observations, most auto-
matic service selection processes operate in a manner similar to
those presented in the next section and do not mention or address
this step. An implicit assumption of the previous works is that all
qualified services are already known and aligned for the activity
and are waiting to be selected in the next step. In other words,
the previous investigators did not address how the qualified candi-
date concrete services for an activity are classified and distin-
guished (discovered). Consequently, after step 2, each activity
could be driven by many candidate services. In step 3, the task is
to pick the fittest service for each activity from all candidates

according to the specified criteria (e.g., QoS). The goal is to obtain
a CWS with optimal or acceptable specified non-functional
features.

As described in the previous paragraph, the entire design-stage
service composition process is time consuming and complex, and if
it is carried out by automation, the cost and effort will certainly be
lower than if this process is carried out manually [9]. Thus, many
research efforts are currently underway to attempt to automate
service composition. However, after a comprehensive investigation
of the existing works, the issue that emerges is that a truly auto-
matic composition method is necessary because all of the existing
works contain certain shortcomings.

Overall, a subset of the works surveyed aims to find a executable
workflow that will connect services in a CWS to fulfill a functional-
ity demand [7,12–18]. The others concentrate on how to select the
fittest service for each abstract activity contained in a predefined
workflow to meet such non-functional demands as QoS
[1,2,4,6,11,19–24] or a behavioral TP [25–29]. In contrast with
QoS, the number of publications on composition research in the
TPs of WSs is small; for additional information and background
on WS transactions, refer to [30]. Otherwise, there are a few
remarkable special cases, such as that presented in [3], which
simultaneously consider both QoS and the TP, but in terms of auto-
mation, a primary drawback of this work is that this approach re-
quires executable workflow templates as an input. Furthermore,
the approaches in [7,13,22–24,18] consider the concepts of seman-
tic reasoning instead of employing only poorly constructed syntac-
tic keyword comparisons, thus making connections (dataflow)
between services that are closer to reality. The reasons for and
advantages to considering semantic reasoning rather than more
traditional methods, such as keyword comparison, can be found
in Section 3 of [31], which provides a clear introduction and analy-
sis of the advantages and disadvantages of such approaches.

In the previous paper [32] of this study, we presented a theoret-
ical keyword-based composition approach, which was designed to
compose a workflow automatically with QoS awareness and thus
closed the existing gap in the current automatic composition works.
In that preliminary paper, without any implementation and exper-
iments, we briefly described the three defined fitness functions as
well as the operators and chromosome pattern of the Genetic Algo-
rithm (GA) to describe an approach that addresses the two compo-
sition concerns (automatic composition workflow with QoS
awareness) that we found at that time. The current paper is a com-
plement to an extension of the previous paper. First, we conduct a
more thorough survey of this field to identify and include another
two common composition concerns in the field (awareness of the
transactional property and semantic matchmaking). Next, we spec-
ify the entire approach in detail, including precise mathematic def-
initions of the proposed four fitness functions. Finally, this paper
presents implementation, experiments, and discussions of the
modeled problem and devised approach.

In summary, the designed approach, with its plural and ordered
fitness function design as well as a special selection mechanism,
will allow users of the approach to request services with the in-
tended functionality, TP, and QoS level simultaneously. Through a
series of experiments, we discover that the independence of and
the priority order among the fitness functions are necessary, and
an effective and efficient priority order is obtained in the experi-
ments. In the following, we itemize the contributions of this paper.

(1) First, we survey and analyze the current automatic composi-
tion efforts and identify several composition concerns as
well as the existing gap in the reviewed efforts.

(2) To fill the gap, this paper proposes a fully automatic, one-
step, design-stage service composition approach based on
the GA that covers all of the identified composition concerns.

Y.-Y. FanJiang, Y. Syu / Information and Software Technology 56 (2014) 352–373 353



Download	English	Version:

https://daneshyari.com/en/article/10367083

Download	Persian	Version:

https://daneshyari.com/article/10367083

Daneshyari.com

https://daneshyari.com/en/article/10367083
https://daneshyari.com/article/10367083
https://daneshyari.com/

