
FCA–CIA: An approach of using FCA to support cross-level change impact
analysis for object oriented Java programs q

Bixin Li a,c, Xiaobing Sun a,b,⇑, Jacky Keung d

a School of Computer Science and Engineering, Southeast University, Nanjing, China
b School of Information Engineering, Yangzhou University, Yangzhou, China
c State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, China
d Department of Computer Science, City University of Hong Kong, China

a r t i c l e i n f o

Article history:
Received 21 January 2012
Received in revised form 26 December 2012
Accepted 4 February 2013
Available online 5 March 2013

Keywords:
Formal concept analysis
Change impact analysis
Lattice of class and method dependence
Impact factor

a b s t r a c t

Background: Software Change Impact Analysis (CIA) is an essential technique in software engineering to
identifying the potential influences of a change, or determining change entities to accomplish such a
change. The results derived, in many cases, ambiguous for the software maintainers, introduces the prob-
lem of unclear starting point of these impacted entities.
Objective: In an attempt to address this issue, this work proposes a novel approach for cross-level CIA,
producing a ranked list of potentially impacted methods derived from class-level changes. Moreover,
the approach of ranking the impact results is expected to be effective for maintainers to distinguish
the probability of the impacted methods to be false-positives. Such results provide an eclectic approach
for CIA.
Method: The approach, FCA–CIA, uses formal concept analysis (FCA) to produce an intermediate represen-
tation of the program based on the static analysis of the source code. The representation is called Lattice
of Class and Method Dependence (LoCMD). FCA–CIA takes the changed classes in the change set as a
whole, and determines the reachable set from the changed classes on the LoCMD. Based on the hierarchi-
cal property of the LoCMD, the impacted methods are ranked according to the impact factor metric which
corresponds to the priority of these methods to be inspected.
Result: Empirical evaluations on four real-world software projects demonstrate the effectiveness of the
impact factor metric and the FCA–CIA technique. The result shows the predicted impacted methods with
higher impact factor values are more likely to be affected by the changes. Our study also shows that the
FCA–CIA technique generates more accurate impact set than the JRipples and ICP coupling based CIA
technique.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Software maintenance and change are necessary to cope with
new requirements, existing faults and change requests, etc.
Changes made to software will inevitably have certain unpredict-
able and undesirable effects on the other parts of the software.
Software Change Impact Analysis (CIA) is a technique commonly
used to identify the potential effects caused by software changes

[11]. CIA starts with a set of changed elements in a software sys-
tem, called the change set, and attempts to determine a possibly
larger set of elements, called the impact set, which requires atten-
tion or maintenance effort due to these changes [11]. It plays an
important role in software development, maintenance, and regres-
sion testing [11,12,50,64]. CIA can be used before or after a change
implementation. Before making changes, we can employ CIA for
program comprehension, change impact prediction and cost esti-
mation [11,12]. After changes have been implemented, CIA can
be applied to trace ripple effects, select test cases, and perform
change propagation [50,64,10,49]. The commonly used CIA tech-
niques mainly contain static CIA and dynamic CIA techniques. Static
CIA techniques are often performed by analyzing the syntax and
semantic, or evolutionary dependence of the program (or its
change history repositories) [2,1,55,44,56,28]. The resultant impact
set often has many false-positives, with many of its elements not
really impacted [37,43,38]. Thus this impact set they compute is
very large and difficult for practical use [11]. Whereas dynamic

0950-5849/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.infsof.2013.02.003

q This work is supported partially by National Natural Science Foundation of
China under Grant No. 60973149, partially by the Open Funds of State Key
Laboratory of Computer Science of Chinese Academy of Sciences under Grant No.
SYSKF1110, partially by Doctoral Fund of Ministry of Education of China under
Grant No. 20100092110022, and partially by the Scientific Research Foundation of
Graduate School of Southeast University under Grant No. YBJJ1102.
⇑ Corresponding author at: School of Computer Science and Engineering, South-

east University, Nanjing, China. Tel.: +86 25 5209089; fax: +86 25 52090879.
E-mail addresses: bx.li@seu.edu.cn (B. Li), xbsun@yzu.edu.cn (X. Sun), Jacky.

Keung@cityu.edu.hk (J. Keung).

Information and Software Technology 55 (2013) 1437–1449

Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.infsof.2013.02.003&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2013.02.003
mailto:bx.li@seu.edu.cn
mailto:xbsun@yzu.edu.cn
mailto:Jacky.Keung@cityu.edu.hk
mailto:Jacky.Keung@cityu.edu.hk
http://dx.doi.org/10.1016/j.infsof.2013.02.003
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


CIA techniques consider some specific inputs, and rely on the anal-
ysis of the information collected during program execution (e.g.,
execution traces information, coverage information and execution
relation information) to calculate the impact set [37,5,43]. More-
over, their impact set often includes some false-negatives, that is,
some of the real impacted elements are not identified [11,38]. In
addition, the cost of dynamic CIA techniques is usually higher than
that of static CIA because of the overhead of expensive dependency
analysis during program execution [13,38].

In spite of such a collection of CIA techniques, there still exist
several problems with current CIA techniques as follows:

(1) The impact set is expected to have fewer false-positives and
false-negatives. To provide an eclectic approach for CIA is
necessary.

(2) The impact set computed by most of current CIA techniques
is composed of a set of potentially impacted entities (classes,
methods or statements). However, software maintainers do
not know where to start to inspect the impacted entities in
the impact set.

(3) The granularity level of impact set of a CIA technique is often
corresponding to that of the change set, i.e., when the change
set is at a certain granularity-level (files, classes, class mem-
bers), the impact set is also at the same granularity-level.
Sometimes a cross-level CIA which computes fine-level
impact set from coarse-level change set is needed [47,38].

(4) Most current CIA techniques compute the impact set based
on computing the union of the impact sets of each changed
element in the change set. It does not consider the relation
among the changed elements in the change set. But in prac-
tice, there exists some relationship among these changed
elements.

Faced with these problems, we propose a novel approach, FCA–
CIA, which uses Formal Concept Analysis (FCA) to support static CIA
for object oriented Java programs in this article. FCA is a field of
applying mathematics to deal with the study of the relation be-
tween entities and entity properties to infer a hierarchy of con-
cepts [23]. For every binary relation between entities and their
properties, a lattice can be constructed to provide a remarkable in-
sight into the structure of the original relation [23]. It can be em-
ployed to produce a decomposition of an existing program based
on the static analysis of the source code [54]. It has been shown
that FCA is an elegant and powerful code analysis technique for
software maintenance in the last few years [54,58]. This article
firstly presents a novel representation, called Lattice of Class and
Method Dependence (LoCMD), a compact and effective representa-
tion for CIA. LoCMD organizes methods into a hierarchical order.
Based on this observation, FCA–CIA computes a ranked list of im-
pact set by considering the change set as a whole. In addition,
FCA–CIA technique is particularly useful for multiple proposed
changes. Another advantage of using LoCMD is its easy application
to CIA. FCA–CIA can be easily performed on the LoCMD by deter-
mining the reachable set from the lattice nodes labeled by the
changed classes. The main contributions of this article are as
follows:

� Construct a representation LoCMD for objected oriented Java
programs, which can be easily applied to CIA.
� Propose a cross-level CIA technique, FCA–CIA, which starts from

class-level changes and produces a ranked list of potentially
impacted methods. These methods are ranked according to a
novel impact factor metric, which displays the priority for
inspecting this method.
� Show the effectiveness of the impact factor metric and the FCA–

CIA technique on four real-world case studies.

This article is organized as follows: in the next section, we pro-
pose a novel representation, Lattice of Class and Method Dependence
(LoCMD), to support CIA. Section 3 gives an introduction about the
FCA–CIA technique based on the LoCMD. We conduct some case
studies to validate the effectiveness of the FCA–CIA technique in
Section 4. In Section 5, some related work of CIA techniques and
applications of FCA in software maintenance are presented. Finally,
we conclude our CIA technique and show some future work in
Section 6.

2. Concept lattice for CIA

2.1. Basics for concept lattice

Formal Concept Analysis (FCA), also called concept lattice, is a
field of applying mathematics based on the schematization of con-
cept and conceptual hierarchy [23]. The basic notions of concept lat-
tice are those of the formal context and the formal concept, which
are defined as follows:

Definition 1 (Formal context). A formal context is defined as a
triple K ¼ ðO;A;RÞ, where R is a binary relation between a set of
formal objects O and a set of formal attributes A. Thus R#O�A.

Definition 2 (Formal concept). A formal concept, which is simply
called concept, is a maximal collection of formal objects sharing
common formal attributes. It is defined as a pair (O,A) with
O #O, A #A, O = s(A) and A = r(O), where sðAÞ ¼ fo 2 Oj8a 2 A :

ðo; aÞ 2 Rg ^ rðOÞ ¼ fa 2 Aj8o 2 O : ðo; aÞ 2 Rg.

In the above definition, s(A) is often said to be the extent of the
concept and r(O) is said to be its intent. Relation between concepts
often forms a partial order on the set of all concepts. We often use
the following subconcept definition to construct a concept lattice
[23]:

Definition 3 (Subconcept). Given two concepts (O1,A1) and (O2,A2)
of a formal context, (O1,A1) is called the subconcept of (O2,A2),
provided that O1 # O2 (or A1 � A2). we usually mark such relation
as: (O1,A1) 6 (O2,A2), O1 # O2, A1 � A2

The set of all concepts of a formal context forms a partial order.
Birkhoff has found in 1940 that it was also a complete lattice [9],
defined as:

Definition 4 (Concept lattice). The concept lattice LðCoÞ is a
complete lattice. LðCoÞ ¼ fðO;AÞ 2 2O � 2AjO ¼ sðAÞ ^ A ¼ rðOÞg,
where infimum and supremum of two concepts (O1,A1) and
(O2,A2) are defined as: (O1,A1) ^ (O2,A2) = (O1 \ O2,r(O1 \ O2)),
and (O1,A1) _ (O2,A2) = (s(A1 \ A2),A1 \ A2), respectively.

The complete information for each concept of LðCoÞ is given by
their extents and intents. However, if the concepts are all labeled
with such complete information, the lattice is really very hard to
understand. Fortunately, there is a simple way to represent their
extents and intents in a more compact and readable form. A lattice
element is labeled with a 2 Aðo 2 OÞ, if it is the most general (spe-
cial) concept having a (o) in its intent (extent). The lattice element
marked with a is thus [23]:

lðaÞ ¼ _fco 2 LðCoÞja 2 intðcoÞg

In this formula, int(co) represents the intent of the concept co. And it
indicates that all concepts smaller than l(a) have a in its intent.
Similarly, the lattice element marked with o is:

cðoÞ ¼ ^fco 2 LðCoÞjo 2 extðcoÞg

1438 B. Li et al. / Information and Software Technology 55 (2013) 1437–1449



Download English Version:

https://daneshyari.com/en/article/10367089

Download Persian Version:

https://daneshyari.com/article/10367089

Daneshyari.com

https://daneshyari.com/en/article/10367089
https://daneshyari.com/article/10367089
https://daneshyari.com

