
Predicting failure-proneness in an evolving software product line

Sandeep Krishnan a,⇑, Chris Strasburg a,b, Robyn R. Lutz a, Katerina Goseva-Popstojanova c, Karin S. Dorman d

a Department of Computer Science, Iowa State University, Ames, IA 50011-1041, United States
b Ames Laboratory, US DOE, Iowa State University, Ames, IA 50011-3020, United States
c Lane Department of Computer Science and Electrical Engineering , West Virginia University, Morgantown, WV 26506-6109, United States
d Department of Statistics, Iowa State University, Ames, IA 50011-1210, United States

a r t i c l e i n f o

Article history:
Received 14 February 2012
Received in revised form 29 September 2012
Accepted 28 November 2012
Available online 12 December 2012

Keywords:
Software product lines
Change metrics
Reuse
Prediction
Post-release defects
Failure-prone files

a b s t r a c t

Context: Previous work by researchers on 3 years of early data for an Eclipse product has identified some
predictors of failure-prone files that work well. Eclipse has also been used previously by researchers to
study characteristics of product line software.
Objective: The work reported here investigates whether classification-based prediction of failure-prone
files improves as the product line evolves.
Method: This investigation first repeats, to the extent possible, the previous study and then extends it by
including four more recent years of data, comparing the prominent predictors with the previous results.
The research then looks at the data for three additional Eclipse products as they evolve over time. The
analysis compares results from three different types of datasets with alternative data collection and pre-
diction periods.
Results: Our experiments with a variety of learners show that the difference between the performance of
J48, used in this work, and the other top learners is not statistically significant. Furthermore, new results
show that the effectiveness of classification significantly depends on the data collection period and pre-
diction period. The study identifies change metrics that are prominent predictors across all four releases
of all four products in the product line for the three different types of datasets. From the product line per-
spective, prediction of failure-prone files for the four products studied in the Eclipse product line shows
statistically significant improvement in accuracy but not in recall across releases.
Conclusion: As the product line matures, the learner performance improves significantly for two of the
three datasets, but not for prediction of post-release failure-prone files using only pre-release change
data. This suggests that it may be difficult to detect failure-prone files in the evolving product line. At
least in part, this may be due to the continuous change, even for commonalities and high-reuse variation
components, which we previously have shown to exist.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

A software product line displays a high degree of commonality
among the products that comprise it. The products differ one from
another via a set of allowed variations. The commonalities are
implemented in files reused in every product, while the variations
are implemented in files available for reuse in the subset of prod-
ucts requiring those options or alternatives.

The high degree of commonality and low degree of variations
lead us to investigate whether we can learn something about pre-
dicting failure-prone files in the product line from information

about changes and failures experienced previously by the same
or other products in the product line.

We perform classification of files as failure-prone and not fail-
ure-prone (two-class classification) using supervised learning
methods. We define a failure-prone file to be a file with one or more
non-trivial post-release bugs recorded. File-level predictions are
then grouped at the component level to examine whether the level
of reuse has an impact on the prediction of failure-proneness at the
component level. For the Eclipse product line studied in this work,
we classify the components based on their level of reuse: Common
components reused in all products, High-reuse variation compo-
nents reused in more than two products and Low-reuse Variation
components reused in at most two products.

File-level predictions are also grouped at the product level to
investigate whether the classification capability improves for dif-
ferent products in the product line. Data at the product level is
an aggregation of data at the component level, i.e., the files in a

0950-5849/$ - see front matter � 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.infsof.2012.11.008

⇑ Corresponding author. Tel.: +1 515 451 2338.
E-mail addresses: sandeepk@iastate.edu (S. Krishnan), cstras@iastate.edu

(C. Strasburg), rlutz@iastate.edu (R.R. Lutz), Katerina.Goseva@mail.wvu.edu
(K. Goseva-Popstojanova), kdorman@iastate.edu (K.S. Dorman).

Information and Software Technology 55 (2013) 1479–1495

Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.infsof.2012.11.008&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2012.11.008
mailto:sandeepk@iastate.edu
mailto:cstras@iastate.edu
mailto:rlutz@iastate.edu
mailto:Katerina.Goseva@mail.wvu.edu
mailto:kdorman@iastate.edu
http://dx.doi.org/10.1016/j.infsof.2012.11.008
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


product are the files of the components that belong to that partic-
ular product. Each file is in one and only one component, but may
be in multiple products.

Ongoing change is typical in product lines, including the one
studied here. Change proceeds along two main dimensions. The
first dimension is evolution of the product line in which, as the
product line matures, more products are built. These additional
products typically include new features (e.g., units of functionality
[1]). The changes also may propagate to other, previously built
products [2]. When the changes are incorporated into the product
line, the product line asset repository is updated so that future
products can reuse them.

The second dimension of product line evolution is change in an
individual product from one of its releases to another. This is sim-
ilar to the evolution and maintenance of a single system, except
that it may happen to each system in the product line.

In previous work [3], we found that even files implementing
commonalities experience change on an on-going basis and that,
as the product line evolves, fewer serious failures occur in
components implementing commonalities than in components
implementing variations. We also found that the common compo-
nents exhibit less change than the variation components over time.
This led us to explore, beginning in [4], whether the stabilizing
behavior of the commonalities as the product line evolves supports
prediction of failure-prone files.

The following research questions motivate the work reported in
this paper:

� Are there any change metrics that serve as good predictors for
which files are failure-prone as a product matures over
releases?
� Do any of these change metrics also serve as good predictors

across all the products and components in a product line over
time?
� Does our ability to predict the failure-prone files improve over

time across products as the product line matures?
� Does the ability to predict failure-prone files differ across com-

ponents belonging to different categories of reuse?
� How do datasets with different data collection and prediction

periods affect prediction performance?
� Do datasets with incrementally increasing data collection peri-

ods yield better results?

To investigate these questions, we explore here whether accu-
rate and meaningful predictions of failure-prone files can be made,
both across the sequential releases of a single product and across
the various products in a product line, taking into consideration
the periods of data collection and prediction. We study whether
there are good predictors of failure-prone files for individual prod-
ucts in the product line, whether there are good predictors across
the product line, and how they are related. We study whether pre-
dicting failure-prone files over shorter time gaps is easier as com-
pared to the standard prediction of failure-prone files six months
after release.

The results reported in this paper extend our previous work to
evaluate failure prediction for the Eclipse product line at the prod-
uct level to also consider the component level. In brief, the new
contributions first reported here include: (1) results from an inves-
tigation into whether any specific learner performed significantly
better than the J48 learner we previously used for classifying fail-
ure-prone files using change data on Eclipse, (2) a quantitative
evaluation of differences in defect prediction performance with re-
spect to alternative time periods for change data collection and
prediction, (3) findings from analysis of defect prediction for the
three categories of reuse levels described above (commonalities,
high-reuse variations, and low-reuse variations) across these peri-

ods, and (4) results from experiments using incrementally increas-
ing data collection periods.

Our data-driven investigation uses the large open-source pro-
ject Eclipse. Following Chastek et al. [5], we consider Eclipse to
be a product line. We distinguish evolution of a single Eclipse prod-
uct from evolution of the Eclipse product line and the evolution of
its components. We also build on previous work by Zimmermann
et al. [6] and by Moser et al. [7]. The authors in [6] studied defects
from the bug database of three early releases of an Eclipse product
at both the file and package level. They built logistic regression
models to predict post-release defects. At the file level, the models
had mixed results, with low recall values less than 0.4 and preci-
sion values mostly above 0.6. The authors in [7] found that change
metrics performed better than code metrics on a selected subset of
the same Eclipse dataset, and that the performance of the J48 deci-
sion tree learner surpassed the performance of logistic regression
and Naı̈ve Bayes learners.

Following [7], we use 17 change metrics collected over different
periods of Eclipse’s release cycle. Existing studies have used differ-
ent types of metrics for predicting failure-prone files, including
code metrics [8–12], change metrics [7,13–15] and previous de-
fects [16]. Such metrics are used either to classify files as defective
or not (binary), or to predict the number of defects per file. In gen-
eral, it is easier to perform classification than to predict the num-
ber of defects. In this study, we seek to classify files as failure-
prone or not with the goal being to predict whether files have
one or more post-release failures.

From a product line perspective, we are most interested in
observing whether predictive ability improves as the product line
evolves and whether the set of prominent predictors, identified
by a feature selection method based on gain ratio, changes both be-
tween products and as the product line evolves over time. In the
work described in this paper, we first replicate the decision tree
portion of the study presented in [7] to validate previous results
and then extend it by including four more recent years of data.

In our previous work [4], we used the J48 tree-based learning
algorithm for prediction. Our effort in this paper is not to identify
the most optimal machine learner; rather it is to investigate
improvement in prediction ability in an evolving product line.
However, to validate if the J48 learner is a good choice, we perform
a preliminary comparison analysis of the performance of 17 ma-
chine learners. Consistent with Menzies et al. [9,17] and Lessmann
et al. [18], we observe that there is no statistically significant dif-
ference between the performance of most machine learners. As a
result, in this work we continue our analysis with the J48 machine
learner as implemented in Weka [19].

We look at the evolution of one particular product, Eclipse Clas-
sic, over a period of 9 years. We observe the classification results
during its early evolution (versions 2.0, 2.1, and 3.0), as in [7],
but also look at its more recent evolution (versions 3.3, 3.4, 3.5,
and 3.6). We find some overlaps and some differences between
the most prominent predictors (identified based on gain ratio) over
the shorter and longer time periods for these components.

We then repeat the effort for three additional products in the
Eclipse product line, Eclipse Java, Eclipse JavaEE and Eclipse C/
C++, across the last four years of their evolution. We perform this
analysis for three types of datasets, distinguished by their data col-
lection and prediction periods. This is new work that has not been
reported previously. We observe mixed results, with very high re-
call and low false-positive rates when no distinction is made be-
tween pre-release and post-release defects. However, we find
that the recall rates drop significantly, if we use pre-release change
data to predict post-release defects. We also observe that classify-
ing failure-prone files using incrementally increasing data collec-
tion periods does not give better results even for commonality
components. All our data and results are available at [20].

1480 S. Krishnan et al. / Information and Software Technology 55 (2013) 1479–1495



Download English Version:

https://daneshyari.com/en/article/10367093

Download Persian Version:

https://daneshyari.com/article/10367093

Daneshyari.com

https://daneshyari.com/en/article/10367093
https://daneshyari.com/article/10367093
https://daneshyari.com

