
Answering software evolution questions: An empirical evaluation

Lile Hattori a,⇑, Marco D’Ambros a, Michele Lanza a, Mircea Lungu b

a REVEAL @ Faculty of Informatics, University of Lugano, Switzerland
b Software Composition Group, University of Berne, Switzerland

a r t i c l e i n f o

Article history:
Available online 1 October 2012

Keywords:
Software evolution
Empirical evaluation
Controlled experiment
Software change history
Mining software repositories

a b s t r a c t

Context: Developers often need to find answers to questions regarding the evolution of a system when
working on its code base. While their information needs require data analysis pertaining to different
repository types, the source code repository has a pivotal role for program comprehension tasks. How-
ever, the coarse-grained nature of the data stored by commit-based software configuration management
systems often makes it challenging for a developer to search for an answer.
Objective: We present Replay, an Eclipse plug-in that allows developers to explore the change history of a
system by capturing the changes at a finer granularity level than commits, and by replaying the past
changes chronologically inside the integrated development environment, with the source code at hand.
Method: We conducted a controlled experiment to empirically assess whether Replay outperforms a
baseline (SVN client in Eclipse) on helping developers to answer common questions related to software
evolution.
Results: The experiment shows that Replay leads to a decrease in completion time with respect to a set of
software evolution comprehension tasks.
Conclusion: We conclude that there are benefits in using Replay over the state of the practice tools for
answering questions that require fine-grained change information and those related to recent changes.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

When evolving a code base, during software development or
software maintenance, developers keep a mental model of the
system—an internal working representation of the software under
consideration [1]. This individual understanding of the system is
constantly being updated by the developer’s interactions with
the code and the team, and by seeking answers to various ques-
tions [2–5]. These questions span multiple areas [6] such as pro-
gram comprehension, software evolution, collaborative software
development, and program analysis; therefore, they require a vari-
ety of information sources (e.g., colleagues, code bases, issue track-
ers, documentation, communication history), and multiple tools
(e.g., [7–10]) to fulfill them.

Although there are a number of resources (data and tools) avail-
able to ease the comprehension of a system and its evolution, the
amount of resources actually used by developers is often limited
to talking to colleagues and exploring the code.

In an exploratory study [11], LaToza et al. report that most
teams have a team historian, the go-to person for questions about
the code; and that most team members subscribe to the check-in
messages to keep themselves updated with the code evolution,

though many expressed dissatisfaction with the lack of detail pro-
vided by their teammates when describing the changes in commit
messages.

We argue that this lack of detail is a fundamental problem for
understanding software evolution, i.e., the changes made by other
developers. The problem is related to the coarse granularity at
which changes are recorded and, consequently, seen by others.
When trying to understand the evolution of the code, the delta be-
tween subsequent changes can be complex enough to prevent
developers from inferring the design decision behind the changes
in the code. Moreover, as indicated by previous studies [12,13],
large commits can also lead to merge conflicts, duplicated work,
and conflicting design decisions.

In our previous work [14,15] we presented Syde, an Eclipse
plug-in that records fine-grained changes in multi-developers
projects by continuously tracking code edits performed in the Inte-
grated Development Environment (IDE).

In recent work we presented Replay [16,17], an Eclipse plug-in
that allows developers to explore the rich change repository cre-
ated by Syde. Developers can search for fine-grained changes made
by a set of people to a set of artifacts and watch them in the chro-
nological order as originally performed in the IDE. This counts for a
better user experience [18] than the aggregated form of commit-
based Software Configuration Management (SCM) tools, such as
CVS and Subversion.

0950-5849/$ - see front matter � 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.infsof.2012.09.001

⇑ Corresponding author. Tel.:+1 778 8835375.
E-mail address: lile.hattori@usi.ch (L. Hattori).

Information and Software Technology 55 (2013) 755–775

Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://dx.doi.org/10.1016/j.infsof.2012.09.001
mailto:lile.hattori@usi.ch
http://dx.doi.org/10.1016/j.infsof.2012.09.001
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


In a previous version of this paper [17], we conducted a con-
trolled experiment to assess whether Replay is at least as effective
and efficient as the state of the practice at supporting developers
with their questions related to software evolution [17]. The design
of the experiment involved the selection, from previous catalogs
[2–5], of a set of common questions that developers ask. We con-
verted them into a set of tasks to measure both the correctness
of the task solutions and their completion time. We conducted
additional runs of the controlled experiment, involving new partic-
ipants, expanding our analysis of the experiments results, and
making our experiments replicable by sharing the necessary
information.

The contributions of our previous paper are:

� Replay, a toolset to replay and exploit a fine-grained change
software repository to aid developers in answering questions
related to software evolution;
� a report on the design and operation of a series of controlled

experiments with 45 subjects to compare the performance of
Replay with the baseline tool (SVN client) in performing
selected software evolution comprehension tasks;
� a quantitative analysis of the results, which shows a statistically

significant advantage of Replay over the baseline in time, and
indicates advantages of Replay on correctness.

The additional contributions this article makes are:

� an extended quantitative analysis of the results obtained with a
larger sample size, which shows a statistically significant
advantage of Replay over the baseline in time, and shows an
improvement on the indication of the advantages of Replay on
correctness;
� a qualitative analysis of the tool’s usefulness based on the sub-

jects’ feedback, discussing the tool’s current flaws, and potential
improvements;
� the complete experimental data to make our experiment

replicable.

1.1. Structure of the article

In Section 2 we review Syde and its change model to subse-
quently present Replay. In Section 3 we describe the design and
operation of our controlled experiment. In Section 4 we analyze
the experiment results and discuss the threats to validity. In Sec-
tion 6 we present work related to the tool, and to the controlled
experiment. In Section 7 we present the concluding remarks. Final-
ly, in A we present the complete dataset that makes this experi-
ment replicable.

2. Tool support: Syde and Replay

2.1. Syde

Syde is a client–server application that records fine-grained
information about the evolution of a system developed in a mul-
ti-developer setting [14,15]. It extends Robbes’ change-based soft-
ware evolution (CBSE) model [19] into a multi-developer context
by modeling the evolution of a system as a set containing se-
quences of changes, where each sequence is produced by one
developer. A change takes a developer’s copy of the system from
one state to the next by means of semantic operations. These oper-
ations are captured by Syde’s client, an Eclipse plug-in, triggered at
every build action. Thus, the evolution of a system comprises the
combination of the sequences of changes produced by each
individual.

2.1.1. System representation
Syde models and captures changes of Java systems. It stores and

analyzes constructs such as classes and methods, instead of files
and lines. To this aim, a system is modeled as an abstract syntax
tree (AST) containing nodes—which represent packages—classes,
methods, and fields. In a multi-developer project, the current state
of a system is different for each developer, as it depends on the
changes each has performed after a checkout. The current state
of a system is therefore represented by keeping track of one AST
per developer.

2.1.2. Change operations
In CBSE, change operations represent the evolution of the sys-

tem instead of file versions. A change operation is the representa-
tion of a change a developer performs in the workspace, i.e., it is
the transition of a system from one state to the next. Syde captures
both atomic changes and composite change operations (e.g., refact-
orings [20]). Atomic changes (e.g., insertion, deletion and change of
the property of a node) are the finest-grained operations on a sys-
tem’s AST, and contain all the necessary information to update the
model. By applying a list of atomic changes in their chronological
order, it is possible to generate all the states of a program’s
evolution.

2.1.3. System architecture
Syde is a client–server application, in which the server records

the change operations, maintains the current state of a project
and publishes information about current and past activities of
the team. The client is a collection of plug-ins that enriches the
Eclipse IDE to track changes and to show awareness information
to developers.

2.2. Replay

Replay is one of the plug-ins that compose Syde’s client. Its goal
is to allow developers to explore the evolution of a system by chro-
nologically replaying the changes collected by Syde. Since atomic
changes are too fine-grained to be shown individually, Replay
groups them by timestamp, author and artifact (package or class),
i.e., all the changes that were performed by a developer in a class
between two subsequent builds are grouped together based on
the last build’s timestamp. Within a group there cannot be more
than one change to one artifact, thus we maintain the granularity
of the changes.

2.2.1. Change groups
Each change group contains the following information:

� the set of changed artifacts, such as packages, classes, methods,
or fields;
� the type of change for each artifact, which can be insertion,

deletion or change;
� the timestamp of the change, more precisely of the build in

which the changes in this group were captured;
� the author of the changes,
� the SCM revision that was the baseline for the change.

2.2.2. Change filters
To help developers address different problems, Replay offers

three orthogonal categories of filters applicable to the changes of
a system under analysis:

� Time-based. They filter the changes based on the time period in
which they were performed, specified as a combination of begin
and end time.

756 L. Hattori et al. / Information and Software Technology 55 (2013) 755–775



Download English Version:

https://daneshyari.com/en/article/10367105

Download Persian Version:

https://daneshyari.com/article/10367105

Daneshyari.com

https://daneshyari.com/en/article/10367105
https://daneshyari.com/article/10367105
https://daneshyari.com

