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a  b  s  t  r  a  c  t

One  of  the  most  promising  non-invasive  markers  of the  activity  of the  autonomic  nervous  system  is
heart  rate  variability  (HRV).  HRV  analysis  toolkits  often  provide  spectral  analysis  techniques  using  the
Fourier  transform,  which  assumes  that  the heart  rate  series  is  stationary.  To  overcome  this  issue,  the
Short  Time  Fourier  Transform  (STFT)  is  often  used.  However,  the wavelet  transform  is  thought  to  be
a more  suitable  tool  for analyzing  non-stationary  signals  than  the  STFT.  Given  the  lack  of  support  for
wavelet-based  analysis  in HRV  toolkits,  such  analysis  must  be implemented  by the  researcher.  This has
made  this  technique  underutilized.

This  paper  presents  a new  algorithm  to perform  HRV  power  spectrum  analysis  based  on  the  Maxi-
mal  Overlap  Discrete  Wavelet  Packet  Transform  (MODWPT).  The  algorithm  calculates  the  power  in any
spectral  band  with  a  given  tolerance  for the  band’s  boundaries.  The  MODWPT  decomposition  tree  is
pruned  to avoid  calculating  unnecessary  wavelet  coefficients,  thereby  optimizing  execution  time.  The
center  of  energy  shift  correction  is  applied  to achieve  optimum  alignment  of  the  wavelet  coefficients.
This  algorithm  has  been  implemented  in  RHRV,  an  open-source  package  for HRV  analysis.  To  the  best  of
our knowledge,  RHRV  is the first  HRV  toolkit  with  support  for wavelet-based  spectral  analysis.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Heart rate variability (HRV) refers to the variation over time
of the intervals between consecutive heartbeats. Since the heart
rhythm is modulated by the autonomic nervous system (ANS), HRV
is thought to reflect the activity of the sympathetic and parasym-
pathetic branches of the ANS. The continuous modulation of the
ANS results in continuous variations in heart rate. One of the most
powerful HRV analysis techniques is based on the spectral analysis
of the time series obtained from the distances between each pair of
consecutive heartbeats. The HRV power spectrum is a useful tool
as a predictor of multiple pathologies [1,2].

Akselrod et al. [3] described three components in the HRV power
spectrum with physiological relevance: the very low frequency
(VLF) component (frequencies below 0.03 Hz), which is modulated
by the renin–angiotensin system; the low frequency (LF) compo-
nent (0.03–0.15 Hz), which is thought to be of both sympathetic
and parasympathetic nature; and the high frequency (HF) compo-
nent (0.18–0.4 Hz), which is related to the parasympathetic system.
At present, there is no absolute consensus on the precise limits of
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the boundaries of these three bands. In the literature we can find
authors who use slightly different bands’ boundaries [4].

There exist several HRV spectral analysis techniques. These
techniques may  be classified as nonparametric and parametric
[5]. The main advantage of the nonparametric methods is the
simplicity and speed of the algorithm used (The Fast Fourier Trans-
form). The main advantage of the parametric methods is that
they give smoother spectral components. However, parametric
methods present problems regarding to correct model order selec-
tion. Although these techniques are widely used, they have no
temporal resolution. This severely limits their ability to analyze
non-stationary signals and transient phenomena. To alleviate this
limitation temporal windows are often used, so that small segments
of the whole signal are analyzed. Among these techniques we may
highlight the Short Time Fourier Transform (STFT) [6]. However,
time–frequency resolution of the STFT depends on the spread of
the window used. Thus, the STFT has fixed time–frequency reso-
lution: high frequency resolution implies poor time resolution and
vice versa. Conversely to Fourier, the wavelet transform performs
time–frequency analysis and it is recognized as a powerful tool to
study non-stationary signals [7].

HRV analysis toolkits such as Kubios HRV [8] or aHRV [9] only
enable HRV spectral analysis based on the Fourier transform or
parametric methods. To the best of our knowledge, the only option
for using the wavelet transform in HRV analysis is to manually
implement the algorithms, probably with the support of some
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general wavelet library. This is tedious, and prone to error. Although
some researchers have done this [10,11], many more (especially
those with a medical background) choose to use Fourier-based
tools, even when they know that the signal being analyzed is non-
stationary. A query in the PubMed database with the terms “heart
rate variability Fourier transform” returns 660 articles, while a
query with the terms “heart rate variability wavelet transform” only
returns 145 articles. The lack of tools for carrying out HRV analy-
sis using the wavelet transform has made this potentially superior
analysis technique underutilized in comparison with the Fourier
transform.

In this paper we present an algorithm to perform HRV power
spectrum analysis based on the Maximal Overlap Discrete Wavelet
Packet Transform (MODWPT). The algorithm calculates the spec-
trogram in any frequency band, allowing a certain tolerance for the
position of the band’s boundaries. The algorithm has been validated
over simulated and real RR series. Its capability for identifying fast
changes in the RR series’ spectral components has been compared
with the STFT and a windowed version of the Burg method, show-
ing that these techniques miss some transient changes that are
successfully identified by the wavelet transform. We  have imple-
mented the algorithm in RHRV, an open-source package for HRV
analysis publicly available on the Internet. A previous version of
this algorithm was published in [12].

Section 2 starts with a brief review of the wavelet transform,
with particular attention to the MODWPT, and then introduces our
algorithm to perform HRV power spectrum analysis. Section 2.5
provides a short description of the implementation of the algorithm
in the RHRV package. Section 3 presents a comparison between our
algorithm, the STFT and the windowed Burg method over simulated
and real RR series. Finally, the results of this paper are discussed and
some conclusions are given.

2. Materials and methods

A brief review of some important wavelet concepts for our algo-
rithm is now given. A wavelet is a small wave  (t) (oscillating
function) that is well concentrated in time. This function must have
unitary norm ‖  ‖ =1 and verify the so-called admissibility condi-
tion:

∫ ∞
−∞ (t)dt = 0.  (t) can be translated and dilated in time,

yielding a set of wavelet functions:

 u,s(t) = 1√
s
 

(
t − u

s

)
, (1)

where s > 0 is a dilation factor, and u is a real number representing
the translations. As   generates all  u,s functions, it is called mother
wavelet.

A continuous wavelet transform measures the time–frequency
variations of a signal f by correlating it with  u,s

Wf  (u, s) =
∫ ∞

−∞
f (t) ∗

u,s(t)dt. (2)

In order to make the wavelet transform implementable on a
computer, both dilation and translation factors must be discretized.
This can be achieved as follows:{
 j,n = 1√

2j
 

(
t − 2jn

2j

)}
j,n ∈ Z.

(3)

This family is an orthonormal basis of L2(R). Orthogonal wavelets
dilated by 2j can be used to study signal variations at the resolu-
tion 2−j. Thus, these families of wavelets originate a multiresolution
signal analysis. Multiresolution analysis projects signals at various
resolution spaces Vj. Each Vj space contains all possible approxima-
tions at the resolution 2−j. Thus, each decomposition level increases
the spectral resolution of the decomposition, at the expense of

losing temporal resolution. Let {Vj}j∈Z be a multiresolution approx-
imation verifying Vj+1 ⊂ Vj ∀j ∈ Z and let Wj be the orthogonal
complement of Vj in Vj−1: Vj−1 = Vj ⊕ Wj. According to [13], the
families{
�j,n = 1√

2j
�

(
t − 2jn

2j

)}
n∈Z

and

{
 j,n = 1√

2j
 

(
t − 2jn

2j

)}
n∈Z

(4)

are an orthonormal basis for Vj and Wj, respectively, for all j ∈ Z.
 j,n are the wavelet functions and �j,n are the scaling functions.

Thus, we can approximate any function f � L2(R)  at resolution
2−j as

PVj f =
∞∑

n=−∞
〈f, �j,n〉�j,n =

∞∑
n=−∞

aj[n]�j,n (5)

and the orthogonal projection of f onto detail space Wj is:

PWj
f =

∞∑
n=−∞

〈f,  j,n〉 j,n =
∞∑

n=−∞
dj[n] j,n. (6)

where aj[n] and dj[n] are called the approximation and detail
coefficients, respectively.

Mallat proved [7] that both approximation and detail
coefficients may  be calculated using a filter bank. Let h[n] and
g[n] be the FIR filters that will be used to compute the approx-
imation and detail coefficients, respectively. It has been proven
[13] that the filter h[n] = 〈1/

√
2�(t/2),  �(t − n)〉 and that g[n] =

〈1/
√

2 (t/2), � (t − n)〉. g[n] and h[n] can be regarded as an approx-
imation to a high-pass filter (the wavelet filter) and to a low-pass
filter (the scaling filter), respectively. By applying recursively over
the approximation coefficients the same filtering operation fol-
lowed by sub-sampling by two, we  obtain the multiresolution
expression of f. This algorithm, known as the pyramid algorithm, is
the most efficient way  of computing the Fast Orthogonal Wavelet
Transform (FOWT) [13].

2.1. MODWPT

Given that the filtering operation is only applied over the
approximation coefficients, the FOWT only provides information
on a limited set of frequency bands which need not be the ones used
in the HRV analysis. A more suitable wavelet transform is needed for
our algorithm: the wavelet packet decomposition (WPD). Instead
of dividing only the approximation coefficients aj[n], both detail
and approximation coefficients are decomposed successively by
applying high pass and low pass filters to each set of coefficients.

Among the WPD  transforms we have chosen the MODWPT [14]
because it is less sensitive to the starting point of the time series and
it is applicable to non dyadic sequences. Furthermore, the MODWPT
avoids the sub-sampling step, and therefore it has the same number
of wavelet coefficients in every decomposition level. This simplifies
computations involving different decomposition levels.

The jth level of the MODWPT decomposes the frequency interval
[0, fs/2], where fs is the sampling frequency of the original signal f,
into 2j equal width intervals (see Fig. 1). Thus, the nth node (begin-
ning at zero) in the jth level of the decomposition tree, the (j, n)
node, is associated with the frequency interval fs/2j+1 [n, n + 1].
Each node will have N wavelet coefficients associated, N being the
length of the sampled signal f. The N-dimensional vector Wj,n will
denote the N wavelet coefficients associated with the (j, n) node.
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