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a  b  s  t  r  a  c  t

An  increasing  number  of  studies  use  the  spectrum  of cardiac  signals  for analyzing  the  spatiotemporal
dynamics  of  complex  cardiac  arrhythmias.  However,  the  relationship  between  the  spectrum  of  cardiac
signals  and  the  spatiotemporal  dynamics  of  the underlying  cardiac  sources  remains  to date  unclear.  In
this  paper,  by  following  a multivariate  signal  analysis  approach  we  identify  the  relationship  between  the
spectrum  of cardiac  signals,  the  spatiotemporal  dynamics  of cardiac  sources,  and  the measurement  char-
acteristics  of the  lead  systems.  Then,  by using  analytical  methods  and  computer  simulations  we  analyze
the  spectrum  of  cardiac  signals  measured  by  idealized  lead  systems  during  correlated  and  uncorrelated
spatiotemporal  dynamics.  Our  results  show  that  lead  systems  can  have  distorting  effects  on  the  spectral
envelope  of cardiac  signals,  which  depend  on  the  spatial  resolution  of the lead  systems  and  on the  degree
of  spatiotemporal  correlation  of  the  underlying  cardiac  sources.  In addition  to this,  our results  indicate
that  the  spectral  features  that  do  not  depend  on  the spectral  envelope  behave  robustly  against  different
choices  of  lead systems.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Fibrillation is a complex cardiac arrhythmia whose spatiotem-
poral characteristics remain poorly understood. Traditionally,
fibrillation has been described as random and disorganized, since it
induces highly irregular traces in the electrocardiogram (ECG) sig-
nal. However, with the application of nonlinear dynamics theory
to the investigation of cardiac arrhythmias and the development
of optical and electrical mapping techniques, it has been suggested
that fibrillation can possess some degree of spatiotemporal regu-
larity [1,2]. This view has led in a natural way to study fibrillation
based on the spectrum of cardiac signals such as the ECG and intrac-
ardiac electrograms (EGM). Spectral features of cardiac signals have
been proposed as experimental indices for detecting ventricular
fibrillation (VF) [3], for quantifying the degree of spatiotemporal
organization of atrial fibrillation (AF) [4] and for predicting the
success of defibrillation shocks [5–7]. Also, intracardiac mapping
techniques have been combined with dominant frequency (DF)
analysis to study the spatiotemporal characteristics of fibrillation.
This method, known as DF mapping, has revealed spatiotemporal
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regularities during AF in both animal models [8–10] and in patients
[11,12] and it is currently regarded as a potential technique to guide
AF ablation therapies [13].

Despite the increasing number of studies that use spectral tech-
niques to analyze fibrillation, the meaning of the spectrum of
cardiac signals remains to date elusive. Even though individual
spectral features of cardiac signals have been linked to spatiotem-
poral characteristics of cardiac rhythms [14–16], the relationship
between the spectrum of cardiac signals and the spatiotemporal
characteristics of cardiac rhythms has not been thoroughly investi-
gated. In addition to this, the effects of lead systems on the spectrum
of cardiac signals are not well understood, and consequently it is
not clear how the spectra of cardiac signals measured by different
lead systems relate to one another. The elucidation of the relation-
ship between the spectra of cardiac signals measured by different
lead systems is of technical and clinical interest in the context of
fibrillation, since it would contribute to the development of novel,
improved methods of DF cardiac mapping, such as non-contact
intracardiac electrical mapping [17,18] and non-invasive surface
ECG mapping [19].

In this paper, we  develop a mathematical formalism for investi-
gating, in a systematic way, the spectral manifestation of different
cardiac rhythms and the spectral effects of lead systems. By fol-
lowing a multivariate signal analysis approach, we identify the
connection between the spectrum of cardiac signals and the spa-
tiotemporal dynamics of the underlying cardiac rhythms. Our
formalism allows us to derive theoretical results which are rele-
vant for the analysis and interpretation of the spectrum of cardiac
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signals, and for devising spectral methods for investigating the spa-
tiotemporal dynamics of cardiac rhythms.

The organization of this paper is as follows. In Section 2 we
develop our mathematical formalism and connect the spectrum
of cardiac signals to the spatiotemporal dynamics of the underly-
ing cardiac rhythms. Physiologically meaningful cases are studied
analytically in Section 3, and in a computer simulation environ-
ment in Section 4. Finally, Section 5 contains the conclusions of our
investigation and the discussion.

2. Mathematical formalism

In this section we present the mathematical formalism for inves-
tigating the spectrum of cardiac signals. Firstly, we introduce the
lead-field bioelectric model of cardiac sources and signals. Then,
we define the autocorrelation and the spectrum of cardiac sources.
Finally, we identify the relationship between: the spectrum of car-
diac signals, the spatiotemporal dynamics of cardiac sources and
the measurement characteristics of lead systems.

Throughout this paper the following notation is used: 〈 · 〉t

denotes time-average, F[  · ] is the Fourier Transform operator, (*)
denotes convolution and ı(·) is the Dirac’s delta. We  use the fol-
lowing vector definitions: 1 = [1, 1, 1]T and 0 = [0, 0, 0]T.

2.1. Bioelectric model

Cardiac sources are the bioelectric processes generated by the
heart during contraction. There exist different, equivalent mathe-
matical paradigms to model the activity of cardiac sources, such as
the monopole field and the dipole field [20]. In this study, we  model
cardiac sources as a time-varying dipole field, i.e. as a spatial distri-
bution of time-varying dipoles J(v, t) = [Jx(v, t), Jy(v, t), Jz(v, t)]T on
a volume V, where v denotes a point located inside V and t denotes
the time instant.

The time-varying activity of cardiac sources can be measured by
lead systems, producing cardiac signals. Taking the dipole field as
our reference description for cardiac sources, we follow a lead-field
approach to model cardiac signals [20]. According to the lead-field
theory, the cardiac signal c(t) that is induced at a lead system by a
dipole field J(v, t) can be expressed as

c(t) =
∫

V

LT (v)J(v, t)dv, (1)

where the vector field L(v) = [Lx(v), Ly(v), Lz(v)]T is the measure-
ment sensitivity distribution (MSD) and describes the ability of the
lead system to measure cardiac dipoles located at v ∈ V . In words,
cardiac signals are a weighted linear combination of the underlying
cardiac sources.

2.2. Autocorrelation and spectrum of cardiac sources

The autocorrelation of a cardiac source, �(v, w, �), ∀v, w ∈ V , is
defined as the collection of the cross-correlations between all pairs
of dipoles in V. Since cardiac dipoles are vectorial entities, the cross-
correlation between two dipoles consists of the cross-correlations
between all three components of each dipole [21]. In order to define
the autocorrelation of a cardiac source, the average dipole field J̄(v)
needs to be introduced:

J̄(v) = 〈J(v, t)〉t = [〈Jx(v, t)〉t , 〈Jy(v, t)〉t , 〈Jz(v, t)〉t]
T . (2)

Based on J̄(v), we define the zero-average dipole field J′(v, t) =
J(v, t) − J̄(v), so that 〈J′(v, t)〉t = 0. The cross-correlation matrix

between two  cardiac dipoles J(v, t) and J(w,  t), where v, w ∈ V , is
then defined as

�(v, w, �) = 〈J′(v, t + �)J′T (w, t)〉t

=

⎛
⎜⎝

�xx(v, w, �) �xy(v, w, �) �xz(v, w, �)

�yx(v, w, �) �yy(v, w, �) �yz(v, w, �)

�zx(v, w, �) �zy(v, w, �) �zz(v, w, �)

⎞
⎟⎠ .

(3)

Therefore, each entry of �(v, w, �) contains the cross-correlation
between one component of J(v, t) and one component of J(w, t).
For instance, matrix entry �zy(v, w, �) is 〈J′z(v, t + �)J′y(w, t)〉t . Also,
the average power of dipole component J′x(v, t) is by definition
Px(v) = �xx(v, v, 0), and analogous expressions can be obtained for
the average power of dipole components J′y(v, t) and J′z(v, t).

The spectrum of a cardiac source, �(v, w, f ), ∀v, w ∈ V , corre-
sponds to the collection of the cross-spectra between all pairs of
dipoles in V, and is defined as

�(v, w,  f ) = F[�(v, w, �)]

=

⎛
⎜⎝

�xx(v, w, f ) �xy(v, w, f ) �xz(v, w, f )

�yx(v, w, f ) �yy(v, w, f ) �yz(v, w, f )

�zx(v, w, f ) �zy(v, w, f ) �zz(v, w,  f )

⎞
⎟⎠ ,

(4)

where the operator F[ · ] is applied to �(v, w, �) on a component-
by-component basis. For instance, �zy(v, w, f ) is F[�zy(v, w, �)].

We also define the total cross-correlation RJ(v, w, �) between
two cardiac dipoles J(v, t) and J(w, t) as the sum of the entries
of �(v, w, �) and the total cross-spectrum SJ(v, w, f ) as the Fourier
Transform of RJ(v, w, �). Mathematically, they can be expressed as

RJ(v, w, �) = 1T �(v, w, �)1, (5)

SJ(v, w, f ) = 1T �(v, w, f )1. (6)

Finally, we  define the normalized cross-correlation �(v, w, �) as
the matrix of entries

�̂ab(v, w, �) = �ab(v, w,  �)√
�aa(v, v, 0)�bb(w, w, 0)

(7)

where a, b ∈ {x, y, z}, and the normalized total cross-correlation
R̂J(v, w, �) as

R̂J(v, w, �) = RJ(v, w, �)
max

�
{RJ(v, w, �)} . (8)

2.3. Autocorrelation and spectrum of cardiac signals

Let c(t) be a cardiac signal measured by applying L(v) to a cardiac
source of autocorrelation �(v, w, �) and spectrum �(v, w, f ) in V.
Define c′(t) as the cardiac signal c(t) minus its time-average value
c̄ = 〈c(t)〉t ,

c′(t) = c(t) − c̄. (9)

The autocorrelation function Rc(�) of the cardiac signal c(t) is
defined as the following average [21]:

Rc(�) = 〈c′(t + �)c′(t)〉t , (10)

and its power spectrum Sc(f) is defined as the Fourier Transform of
its autocorrelation function,

Sc(f ) = F[Rc(�)]. (11)
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