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Abstract

We introduce a new shrinkage scheme,hyper-trim that generalizeshard andsoft shrinkage pro-
posed by Donoho and Johnstone (1994). The new adaptive denoising method presented is based on
Stein’s unbiased risk estimation (SURE) and on a new class of shrinkage function. The proposed
new class of shrinkage function has continuous derivative. The shrinkage function is simulated and
tested with ECG signals added with standard Gaussian noise using MATLAB. This method gives
better mean square error (MSE) performance over conventional wavelet shrinkage methodologies.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The electrocardiogram (ECG) obtained by non-invasive technique is a harmless, safe
and quick method for diagnostic purposes. The accuracy and the content of diagnos-
tic information extracted from recording requires proper characterization of waveform
morphologies that needs better preservation of signal details and higher attenuation of cor-
rupted noise. Recently, wavelet transform has proven to be a useful tool for non-stationary
signal analysis. Wavelets provide a flexible prototyping environment that comes with fast
computational algorithms. A shrinkage method compares empirical wavelet coefficient
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with a threshold and is set to zero if its magnitude is less than the threshold value [1]. The
threshold acts as an oracle, which distinguishes between the significant and insignificant
coefficients. Shrinkage of empirical wavelet coefficients works best when the underling set
of the true coefficients off is sparse. When overwhelming majority of coefficients off

are small, and the remaining few large ones explain most of the functional form off .
The wavelet shrinkage here is conceptually inspired by the work of Donoho and John-

stone (1995) as well as the work of Breiman (1995) and Bruce and Gao (1996). Donoho et
al. have developed wavelet shrinkage methods for denoising for function estimation [2].
Of these wavelet shrinkage methods,SureShrinkis an optimized hybrid scale depen-
dent thresholding scheme [5] based on SURE. It combines universal threshold selecting
scheme and scale dependent adaptive threshold selection scheme that provides the best
estimation results in the sense ofl2 risk when the true function is not known [3]. Asymp-
totically both hard and soft shrinkage estimates achieve within a factor log(n) of the ideal
performance [1]. The wavelet coefficients at the coarsest scale are left intact, while the
coefficients at all the other scales are thresholded via soft shrinkage with the universal
thresholding

λ = σ
√

2 logN, (1)

whereσ 2 is the noise variance andN is the length of the signal.
The shrinkage functions proposed by Donoho and Johnstone are the hard and the soft

shrinkage function:

δH
λ (x) =

{
0, |x| � λ,
x, |x| > λ,

(2)

δS
λ(x) =

{0, |x| � λ,
x − λ, x > λ,
x + λ, x < −λ,

(3)

whereλ ∈ [0,∞] is the threshold.
Note that the derivation of standard soft shrinkage function is not continuous. Both hard

and soft shrinkages have advantages and disadvantages. The soft shrinkage estimates tend
to have bigger bias, due to the shrinkage of large coefficients. Due to the discontinuities of
the shrinkage function, hard shrinkage estimates tend to have bigger variance and can be
unstable—that is, sensitive to small changes in the data [4].

To overcome the drawbacks of hard and soft shrinkage, anon-negative garroteshrink-
age function [4] was first introduced by Breiman (1995) as follows:

δG
λ (x) = x

[
1− (λ/x)2]

+ =
{

0, |x| � λ,
x − (λ2/x), |x| > λ.

(4)

The shrinkage functionδG
λ (x) is continuous and approaches the identity line as|x| gets

large. The non-negative garrote shrinkage function provides a good compromise between
the hard and the soft shrinkage function. The garrote shrinkage likefirm shrinkage is less
sensitive than hard shrinkage to small fluctuations and less biased than soft shrinkage [4,8].
Breiman showed that non-negative garrote with a consistent lower prediction error than
subset selection when the true model has many small nonzero coefficients.
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