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a b s t r a c t

The magnitude squared coherence (MSC) spectrum is an often used frequency-

dependent measure for the linear dependency between two stationary processes, and

the recent literature contain several contributions on how to form high-resolution data-

dependent and adaptive MSC estimators, and on the efficient implementation of such

estimators. In this work, we further this development with the presentation of

computationally efficient implementations of the recent iterative adaptive approach

(IAA) estimator, present a novel sparse learning via iterative minimization (SLIM)

algorithm, discuss extensions to two-dimensional data sets, examining both the case

of complete data sets and when some of the observations are missing. The algorithms

further the recent development of exploiting the estimators’ inherently low displace-

ment rank of the necessary products of Toeplitz-like matrices, extending these formula-

tions to the coherence estimation using IAA and SLIM formulations. The performance of

the proposed algorithms and implementations are illustrated both with theoretical

complexity measures and with numerical simulations.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

The problem of estimating the magnitude squared
coherence (MSC) between two or more measured signals
is frequently occurring in a wide variety of fields, such as
speech processing, time series analysis, geophysics, biome-
dical engineering, and synthetic aperture radar imaging,
wherein one wishes to determine the linear relationship
between signals or to determine if a common signal is
present in several different measurements. Recently, non-
parametric data-adaptive estimation techniques have been

exploited to form robust high-resolution MSC estimates
[1–5]. In [1,2], it was shown that the one- and two-
dimensional (2-D) Capon and APES-based MSC estimators
allow for high-resolution MSC estimates, by forming data-
adaptive filter banks, with each filter being constrained to
pass its center frequency undistorted while suppressing the
contribution of all other components. In [3], this work was
extended to allow for non-uniformly sampled data by
exploiting a formulation based on the recent iterative
adaptive approach (IAA) [6]. The IAA-based MSC algorithm,
as well as a segmented version termed SIAA-MSC, was there
shown to yield reliable estimates even if a large proportion
of the measurements are missing. In this paper, we further
extend these works by a proposing 1-D and 2-D formula-
tions of the IAA-based MSC estimator, as well as for a novel
semi-parametric SLIM-based estimator. The sparse learning
via iterative minimization (SLIM) method was introduced in
the context of MIMO radar imaging in [7], and can be
viewed as a version of the well-known (regularized) FOCUSS
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algorithm [8], although including also the iterative estima-
tion of the noise variance (see also [9]). Both the IAA and
SLIM algorithms have been shown to converge locally
[7,10], as well as to yield excellent performance for both
complete or incomplete data sets. Regrettably, both algo-
rithms are also computationally cumbersome, and several
works have focused on forming various computationally
efficient implementations for uniformly and non-uniformly
sampled data sequences [11–17]. The presented work may
be viewed as a continuation of our recently proposed
efficient implementation of the Capon- and APES-based
MSC estimators [18], wherein we combined earlier efforts
in forming computationally efficient implementations of
these spectral estimators [19–26] with the inherently low
displacement rank of the estimators’ products of Toeplitz-
like matrices, thereby allowing for the development of
appropriate Gohberg–Semencul (GS) representations of
these matrices. The resulting implementation was found
to be several orders of magnitude more efficient than the
straightforward implementations. Here, building on this
work, we extend the IAA- and proposed SLIM-based MSC
estimators in a similar way. The paper is organized as
follows: in the following section, we briefly review data-
adaptive MSC estimation, comparing the formulations of the
earlier introduced Capon-, APES-, and IAA-based MSC esti-
mators, as well as introduce a novel SLIM-based MSC
estimator. Then, in Section 3, we recall formulations of the
MSC estimators using trigonometric polynomials, and then,
in Section 4, introduce the efficient implementations of the
IAA- and SLIM-based estimators using appropriate GS
representations for the necessary products of Toeplitz-like
matrices. In Section 5, we proceed to discuss the case of
incomplete data sets, followed by the extensions to 2-D
formulations of the estimators in Section 6. Section 7
contains a study of the performance of the discussed
estimators and implementations. Finally, we conclude on
the work in Section 8.

2. Data-adaptive MSC estimation

The MSC spectrum, g2
x1x2
ðoÞ, of two stationary complex

valued signals, x1ðnÞ and x2ðnÞ, for n¼ 0,1, . . . ,N�1, is
defined as (see, e.g., [27–29])

g2
x1x2
ðoÞ ¼

9Sx1x2
ðoÞ92

Sx1
ðoÞSx2

ðoÞ ð1Þ

where Sx1
ðoÞ and Sx2

ðoÞ denote the (auto) spectra of the
signals x1ðnÞ and x2ðnÞ, respectively, whereas Sx1x2

ðoÞ
denotes the cross-spectrum between these two signals.
The Capon-, APES-, and IAA-based MSC estimates are
formed using the matched filter bank framework (see
also [29,30]). Let hðiÞN 2 CN�1 denote a narrowband data
dependent finite impulse response (FIR) filter centered at
a generic frequency o 2 ð�p,p�, and form the signals of
interest into N � 1 subvectors:

xðiÞN ¼ ½xið0Þ xið1Þ . . . xiðN�1Þ�T ð2Þ

where i¼1 or 2 for the respective signal, and where ð�ÞT

denotes the transpose. As the filters are narrowband,
aiming to only pass the generic frequency o undistorted

whereas the contribution from all other frequencies are
minimized, the matched filter bank spectral estimate at
frequency o is found as the power of the filtered signal,
i.e.,

Sxi
ðoÞ � hðiÞHN RðiÞN hðiÞN ð3Þ

where RðiÞN represents the signal’s covariance matrix,
defined as

RðiÞN ¼ EfxðiÞN xðiÞHN g ð4Þ

with i¼1 or 2 for the respective signal, where Ef�g denote
the expectation and ð�ÞH the conjugate transpose, respec-
tively, and where hðiÞN is a data dependent narrow band
filter formed such that

hðiÞN ¼ argmin
hðiÞ

N

Sxi
ðoÞ s:t: hðiÞHN fNðoÞ ¼ 1 ð5Þ

where

fNðoÞ ¼ ½1 eEo . . . eEðN�1Þo�T ð6Þ

is the frequency steering vector. Minimization of (5) with
respect to the unknown parameters vector results in a
data adaptive and frequency dependent optimal filter of
the form:

hðiÞN ¼
½RðiÞN �

�1fNðoÞ
fH

NðoÞ½R
ðiÞ
N �
�1fNðoÞ

ð7Þ

The cross-spectral density needed to form (1) is estimated
as

Sx1x2
ðoÞ � hð1ÞHN Rð12Þ

N hð2ÞN ð8Þ

with Rð12Þ
N denoting the cross-covariance matrix, defined

as

Rð12Þ
N ¼ Efxð1ÞN xð2ÞHN g ð9Þ

Combining (1), (3), (7) and (8), one obtains the Capon-
based MSC estimator [1,4]

g2
x1x2
ðoÞ ¼

9fH
NðoÞP

ð12Þ
N fNðoÞ9

2Q2
i ¼ 1 fH

NðoÞ½R
ðiÞ
N �
�1fNðoÞ

ð10Þ

where

PN9½Rð1ÞN �
�1Rð12Þ

N ½R
ð2Þ
N �
�1 ð11Þ

2.1. IAA-based MSC estimation

As shown in [1,2], the Capon- and APES-based MSC
estimates result from two different design choices for the
narrowband filters and use the standard time based
averages approximation in place of estimates of the auto
and cross correlation matrices. The IAA-based algorithm
instead forms the covariance matrices as the sum of the
spectral contribution from all possible frequency grid
points, essentially viewing that data as a sum of sinusoids,
with the number of sinusoids being equal to the size of
the frequency grid. Clearly, this is not possible without
knowing the amplitudes of all the sinusoids, and, as a
result, the estimates are formed using an iterative
scheme. Following [3], the data covariance matrices are
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