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a b s t r a c t

Parameter estimation methods have wide applications in signal processing, communica-

tion and system identification. This paper derives an iterative least squares algorithm to

estimate the parameters of output error systems and uses the partitioned matrix

inversion lemma to implement the proposed algorithm in order to enhance computa-

tional efficiencies. The simulation results show that the proposed algorithm works well.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

The iterative algorithms are important for finding the
zeros of nonlinear functions and the solutions of linear or
nonlinear matrix [1,2], e.g., the Newton iteration methods
[3], the optimization and control algorithms [4–7], the
Jacobi iteration and the Gauss–Seidel iterations for solving
matrix equations Ax¼ b [8,9], the least squares based
iterative methods [10] and the hierarchical gradient based
iterative methods [11] for solving coupled Sylvester matrix
equations AXþXB¼ C and DXþXE¼ F and general
coupled matrix equations. Recently, Li et al. considered
the fitting problems of nonlinear functions or nonlinear
system modeling and presented a gradient based iterative
algorithm and a Newton iterative algorithm to estimate the

parameters of a nonlinear function from noisy data accord-
ing to the negative gradient search and the Newton
iteration. Furthermore, two model transformation based
iterative algorithms have been developed for improving
computational efficiencies [12]; a two-stage least squares
based iterative estimation algorithm has been presented
for CARARMA system modeling [13].

The recursive algorithms are very related to the itera-
tive algorithms [15–17]. In general, the recursive algo-
rithms can be used for on-line identification and the basic
idea is to update the parameters of the systems by using
real-time measurement information [14]. Liu et al. dis-
cussed the auxiliary model based multi-innovation esti-
mation algorithm for multiple-input single-output
systems [18] and studied the convergence properties of
stochastic gradient algorithm for multivariable systems
[19]; Ding et al. explored time series autoregressive
modeling in the presence of missing observations by
using the polynomial transformation technique [20]. Xiao
et al. presented a residual based interactive least squares
algorithm for a controlled autoregressive moving average
(C-ARMA) model [21]; Wang et al. proposed the residual
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based interactive stochastic gradient algorithm for con-
trolled moving average models [22].

System identification and parameter estimation meth-
ods can obtain the parameters of the systems under
consideration and are basic for state estimation and
filtering [23–26], and adaptive control [27–29]. The itera-
tive algorithms can be used not only for solving matrix
equations but also compute the system parameters. In the
area of system identification, Ding et al. derived a least
squares based and a gradient based iterative estimation
methods for output error moving average systems
[30,31]; similar iterative methods have been developed
for Box–Jenkins systems [32]; Zhang et al. derived a
hierarchical gradient based iterative algorithm for multi-
variable output error moving average systems [33]; Wang
studied recursive and iterative algorithms for output error
moving average systems [34].

Recently, Hu et al. studied an iterative least squares
estimation algorithm for controlled moving average
systems based on matrix decomposition [35], and a
decomposition based iterative estimation algorithm for
autoregressive moving average models [36]. On the basis
of the work in [35,36], this paper derives an iterative least
squares identification algorithm for output error systems
using the information matrix decomposition and the
partitioned matrix inversion lemma.

The rest of this paper is organized as follows. Section 2
gives the iterative least squares estimates for output
error. Section 3 derives an iterative least squares algo-
rithm using the partitioned matrix inversion lemma.
Section 4 provides a simulation example to show the
effectiveness of the proposed algorithm. Finally, Section 5
offers some concluding remarks.

2. Basic algorithms

Consider the following output error system [30]:

yðtÞ ¼ xðtÞþvðtÞ, ð1Þ

xðtÞ ¼�
Xna

i ¼ 1

aixðt�iÞþ
Xnb

i ¼ 1

biuðt�iÞ, ð2Þ

where fuðtÞg and fyðtÞg are the input and output sequences
of the system, fvðtÞg is a white noise sequence with
zero mean.

Assume that the orders na and nb are known and n :¼

naþnb and yðtÞ ¼ 0, uðtÞ ¼ 0 and vðtÞ ¼ 0 for tr0. The
objective is to derive an iterative parameter estimation
algorithm to estimate the unknown parameters ðai,biÞ,
using on the partitioned matrix inversion lemma, from
available input–output measurement data fuðtÞ,yðtÞ : t¼

0,1,2, . . . ,Lg, where L denotes the data length (Lbn).
Define the parameter vector h and the information

vector uðtÞ as

h :¼
a

b

� �
2 Rn, uðtÞ :¼

/ðtÞ

wðtÞ

" #
2 Rn,

where

a :¼ ½a1,a2, . . . ,ana �
T 2 Rna ,

b :¼ ½b1,b2, . . . ,bnb
�T 2 Rnb ,

fðtÞ :¼ ½�xðt�1Þ,�xðt�2Þ, . . . ,�xðt�naÞ�
T 2 Rna ,

cðtÞ :¼ ½uðt�1Þ,uðt�2Þ, . . . ,uðt�nbÞ�
T 2 Rnb : ð3Þ

Then (2) and (1) can be written as

xðtÞ ¼/T
ðtÞaþwT

ðtÞb, ð4Þ

yðtÞ ¼/T
ðtÞaþwT

ðtÞbþvðtÞ: ð5Þ

Define the stacked output vector Y , the stacked informa-
tion matrices U and U as

Y :¼

yð1Þ

yð2Þ

^

yðLÞ

2
66664

3
77775 2 RL, U :¼

/T
ð1Þ

/T
ð2Þ

^

/T
ðLÞ

2
66664

3
77775 2 RL�na ,

U :¼

wT
ð1Þ

wT
ð2Þ

^

wT
ðLÞ

2
66664

3
77775 2 RL�nb :

Note that the matrix U and the vector Y contain all the
measured data fuðtÞ,yðtÞ : t¼ 0,1,2, . . . ,Lg, and the matrix U
is unknown because the true output terms (i.e., the noise-free
output terms) in U are the unknown inner variables.

According to (5), define a cost function

JðhÞ :¼
XL

t ¼ 1

½yðtÞ�/T
ðtÞa�wT

ðtÞb�2 ¼ JY�Ua�UbJ2,

where the norm of the vector x is defined as JxJ2 :¼ xTx.
Minimizing JðhÞ and letting the partial derivative of JðhÞ

with respect to h be zero give

@JðhÞ

@h
¼�2

UT

UT

" #
½Y�Ua�Ub� ¼ �2

UT

UT

" #
Y�½U,U�

a

b

� �� �
¼ 0:

Provided that the involved matrix is invertible, we can
obtain the relation:

h¼
a

b

� �
¼

UT

UT

" #
½U,U�

 !�1
UT

UT

" #
Y

¼
UTU UTU

UTU UTU

" #�1
UTY

UTY

" #
: ð6Þ

However, since U is unknown, it is impossible to calculate
the parameter estimation vector h via the above equation
directly. To solve this difficulty, the solution is based on
the hierarchical identification principle [37,38].

Let k¼ 1,2,3, . . . be an iteration variable and ĥk :¼

âk

b̂k

" #
be the iterative estimate of h. Let x̂kðt�iÞ be the

estimate of xðt�iÞ at iteration k, and define the estimates:

/̂kðtÞ :¼ ½�x̂k�1ðt�1Þ,�x̂k�1ðt�2Þ, . . . ,�x̂k�1ðt�naÞ�
T 2 Rna ,

Ûk :¼

/̂
T

kð1Þ

/̂
T

kð2Þ

^

/̂
T

kðLÞ

2
6666664

3
7777775
2 RL�na : ð7Þ
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