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Abstract

An approach that is common in the machine learning literature, known as active sensing, is applied to provide a

method for managing agile sensors in a dynamic environment. We adopt an active sensing approach to scheduling

sensors for multiple target tracking applications that combines particle filtering, predictive density estimation, and

relative entropy maximization. Specifically, the goal of the system is to learn the number and states of a group of

moving targets occupying a surveillance region. At each time step, the system computes a sensing action to take, based

on an entropy measure called the Rényi divergence. After the measurement is made, the system updates its probability

density on the number and states of the targets. This procedure repeats at each time where a sensor is available for use.

The algorithms developed here extend standard active sensing methodology to dynamically evolving objects and

continuous state spaces of high dimension. It is shown using simulated measurements on real recorded target

trajectories that this method of sensor management yields more than a ten fold gain in sensor efficiency when compared

to periodic scanning.
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1. Introduction

The problem of sensor management is to
determine the best way to task a sensor or group
of sensors when each sensor may have many
modes and search patterns. Typically, the sensors
are used to gain information about the kinematic
state (e.g. position and velocity) and identification
of a group of targets. Applications of sensor
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management are often military in nature [36], but
also include things such as wireless networking [28]
and robot path planning [29]. There are many
objectives that the sensor manager may be tuned
to meet, e.g. minimization of track loss, max-
imization of probability of target detection,
minimization of track error/covariance, and max-
imization of identification accuracy. Each of these
different objectives taken alone may lead to a
different sensor allocation strategy [36,38].
Many researchers have approached the sensor

scheduling problem with a Markov decision
process (MDP) strategy. However, a complete
long-term (non-myopic) scheduling solution suf-
fers from combinatorial explosion when solving
practical problems of even moderate size. Re-
searchers have thus worked at approximate solu-
tion techniques. For example, Krishnamurthy
[26,27] uses a multi-arm bandit formulation
involving hidden Markov models. In [27], an
optimal algorithm is formulated to track multiple
targets with an electronically scanned array that
has a single steerable beam. Since the optimal
approach has prohibitive computational complex-
ity, several suboptimal approximate methods are
given and some simple numerical examples invol-
ving a small number of targets moving among a
small number of discrete states are presented. Even
with the proposed suboptimal solutions, the
problem is still very challenging numerically. In
[26], the problem is reversed, and a single target is
observed from a collection of sensors. Again,
approximate methods are formulated due to the
intractability of the globally optimal solution.
Bertsekas and Castanon [1] formulate heuristics
for the solution of a stochastic scheduling problem
corresponding to sensor scheduling. They imple-
ment a rollout algorithm based on their heuristics
to approximate the stochastic dynamic program-
ming algorithm. Additionally, Castanon [5,6]
formulates the problem of classifying a large
number of stationary objects with a multi-mode
sensor based on a combination of stochastic
dynamic programming and optimization techni-
ques. Malhotra [32] proposes using reinforcement
learning as an approximate approach to dynamic
programming. Very recently, Hernandez et al. [12]
have used posterior Cramer-Rao bounds [41] to

control the measurement sequence in a setting
similar to that studied here.
Others have proposed using information mea-

sures a means of sensor management. In the
context of Bayesian estimation, a good measure of
the quality of a sensing action is the reduction in
entropy of the posterior distribution that is
expected to be induced by the measurement.
Therefore, information theoretic methodologies
strive to take the sensing action that maximizes
the expected gain in information. The possible
sensing actions are enumerated, the expected gain
for each measurement is calculated, and the action
that yields the maximal expected gain is chosen.
Hintz et al. [15,16] focus on using the expected
change in Shannon entropy when tracking a single
target moving in one-dimension with Kalman
Filters. A related approach uses discrimination
gain based on a measure of relative entropy, the
Kullback–Leibler (KL) divergence. Schmaedeke
and Kastella [42] use the KL divergence to
determine optimal sensor-to-target tasking. Kas-
tella [21,23] uses KL divergence to manage a
sensor between tracking and identification mode in
the multitarget scenario. Mahler [30,31] uses the
KL divergence as a metric for optimal multisensor
multitarget sensor allocation. Zhao [47] compares
several approaches, including simple heuristics,
entropy, and relative entropy (KL).
Information-based adaptivity measures such as

mutual information (related to the KL divergence)
and entropy reduction are a common learning
metric that have been used in the machine learning
literature in techniques with the names ‘‘active
object recognition’’ [8], ‘‘active computer vision’’
[44], and ‘‘active sensing’’ [10]. These techniques
are iterative procedures wherein the system has the
ability to change sensor parameters to make the
learning task easier. The ultimate goal is to learn
something about the environment, e.g. the class of
an object, the orientation of a robot’s tool, robot
location.
A specific example of the role of information

theoretic measures in machine learning is the
repeated interrogation of an object to determine
the object class. Denzler et al. [8] study a situation
in which a camera has many adjustable para-
meters, including focal length, pan and tilt angles,
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