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Abstract

We present a generative factor analyzed hidden Markov model (GFA-HMM) for automatic speech recognition. In a

standard HMM, observation vectors are represented by mixture of Gaussians (MoG) that are dependent on discrete-

valued hidden state sequence. The GFA-HMM introduces a hierarchy of continuous-valued latent representation of

observation vectors, where latent vectors in one level are acoustic-unit dependent and latent vectors in a higher level

are acoustic-unit independent. An expectation maximization (EM) algorithm is derived for maximum likelihood esti-

mation of the model.

We show through a set of experiments to verify the potential of the GFA-HMM as an alternative acoustic modeling

technique. In one experiment, by varying the latent dimension and the number of mixture components in the latent

spaces, the GFA-HMM attained more compact representation than the standard HMM. In other experiments with var-

ies noise types and speaking styles, the GFA-HMM was able to have (statistically significant) improvement with respect

to the standard HMM.
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1. Introduction

In the automatic speech recognition (ASR)

problem, one is presented with multi-dimensional

data with Dy dimension where it is assumed that

the data is generated from acoustic sources that

are modeled as discrete state q in a hidden Mar-

kov model (HMM) (Rabiner and Juang, 1993).
The transition of the states is assumed to encode

the transition of the speech unit and the content

of the uttered speech can be inferred by the well-

known Viterbi algorithm (Viterbi, 1967). The

task in speech modeling for ASR within the
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HMM framework is to obtain a compact and

accurate model of the observations. However,

this is a hard problem, since the observation vec-

tor is high dimensional and the elements in the

observation vector contain second as well as
higher order statistical information. Traditional

approaches in modeling speech observations in

an HMM make use of mixture of Gaussians

(MoG) with usually a diagonal covariance matrix

in each state, which implicitly models the intra-

frame correlations.

Despite its pattern recognition appearance, the

speech model in an HMM can be viewed in statis-
tics as a latent representation. In particular, the

discrete state q is the discrete latent representation

of the speech unit and the discrete Gaussian index

m in the MoG is the discrete latent representation

of the density in that state. In this context, it is

therefore natural to describe the Dy dimensional

observation vector y(t) at time t as correlated in

terms of a smaller set of Dx dimensional continu-
ous-valued latent vector x(t). In this case, the most
straightforward description of the continuous-val-

ued latent representation of y(t) is given by the fol-
lowing linear model

ynðtÞ ¼
XDx

l¼1
KnlxlðtÞ þ vnðtÞ; n ¼ 1; . . . ;Dy ; ð1Þ

where yn(t) denotes the nth element in vector y(t) at

time t. The yn(t) depends on linear combination of

elements in x(t) with matrix K ¼ ½Knl�Dy�Dx . The

density of y(t) is also related to the Dy-dimensional

noise v(t) with element vn(t). Note that the problem
in Eq. (1) is general, since without certain con-

straints imposed on the model, the solution is

non-trivial.
In the context of the continuous-valued latent

representation, Eq. (1) presents solutions with

different physical meanings depending on the

different constraints on the model (Roweis and

Ghahramani, 1999; Frey, 1999). In independent

component analysis (ICA) (Comon, 1994; Bell

and Sejnowski, 1995) the constraints are as fol-

lows: (1) vn(t) = 0; i.e., no distortions in observa-
tion (no additive noise) y(t), (2) element xl(t) in

x(t) is independent from each other, and (3) At

most one element xl(t) is Gaussian distributed or

xl(t) has usually a non-Gaussian density. Maxi-

mum likelihood estimation of K leads to the ICA

solution (Pearlmutter and Parra, 1997). Another

interesting related model is independent factor

analysis (IFA) (Attias, 1998). IFA is obtained by
the following constraints: (1) element of x(t),
xl(t), is independent and distributed as non-Gauss-

ian density, (2) v(t) is distributed as diagonal

Gaussian density.

Though advanced algorithms (Bell and Sejnow-

ski, 1995; Attias, 1998; Amari et al., 2000; Car-

doso, 1997; Hyvarinen et al., 2001) have been

derived for signal processing within the framework
of continuous-valued latent representation, there

are few works applied to ASR. One reason is that

the MoG can approximate any observation vector

distribution given a sufficient number of model

parameters and enough training data. Thus, by

increasing the amount of training data and/or

increasing number of model parameters, speech

models by MoGs in HMMs can reach high recog-
nition accuracy for input speech. Due to this

claim, one might expect that the above continu-

ous-valued latent representation may not be useful

in ASR. However, there are several important dif-

ferences in speech recognition research. Firstly, the

number of parameters in the model and the

amount of training data increase monotonically

in order to achieve an improved performance. Sec-
ondly, the larger the number of parameters in a

model, the larger the amount of training data is

needed in order to have accurate estimation of

the parameters. Thirdly, given the amount of

training data, even when the number of parame-

ters is increased, the performance of the model

can easily reach a saturation point. These observa-

tions could give rise to problems in spontaneous
speech recognition since the amount of training

data is not sufficient for a reliable estimation of

all acoustic units. Some heuristically justified ap-

proaches have been applied to address the above

problems, for example, the method of parameter-

tying (Bellegarda and Nahamoo, 1990). But

parameter-tying has its own drawbacks since it

considerably requires some artistry to design the
way to share parameters.

Continuous-valued latent representation can be

useful for modeling speech in a compact way. Note
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