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Abstract

This paper is intended as a contribution to enhance orthogonal collocation methods. In this, a novel collocation method—TH-collocation—is

applied to the biharmonic equation and themerits of such procedure are exhibited. TH-collocation relaxes the continuity requirements and, for the

2D problems here treated, leads to the development of algorithms for which the matrices are sparse (nine-diagonal), symmetric and positive

definite. Due to these properties, the conjugate gradientmethod can be directly, andmore effectively, applied to them. These features contrast with

those of the standard orthogonal spline collocation on cubicHermites, which yieldsmatrices that are non-symmetric and non-positive. This paper

is part of a line of research in which a general and unified theory of domain decomposition methods, proposed by Herrera, is being explored. Two

kinds of contributions can be distinguished in this; some that are relevant for the parallel computation of continuousmodels and newdiscretization

procedures for partial differential equations. The present paper belongs to this latter kind of contributions.
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1. Introduction

This paper is part of a line of research in which a general

and unified theory of domain decomposition methods

(DDM), proposed by Herrera [1] and stemming from

Trefftz method [2], is being explored. In it, the terms

‘domain decomposition methods’ are understood in broader

sense than usual and they include many aspects of numerical

methods for partial differential equations. As a matter of

fact, Herrera’s approach to partial differential equations

constitutes a general and systematic formulation of

discontinuous Galerkin methods [3], in which the use of

‘fully’ discontinuous functions is permitted. The investi-

gations that are being carried out, in the line of research

mentioned above, cover two different aspects. One is

concerned with developing novel discretization procedures

[4,5] and the other one deals with producing new ways of

efficiently using parallel computing resources in the

numerical simulation of continuous systems [3].

The main purpose of the present paper is to present an

improved orthogonal-collocation treatment of the biharmo-

nic equation. This is based on the application of a new

general collocation method, ‘TH-collocation’, which was

introduced in a pair of previous papers [4,5]. An interesting

and attractive feature of TH-collocation is the relaxation of

the continuity conditions, which allows using trial-spaces of

functions that are globally only C0. This, in turn, permits

deriving algorithms with better-structured matrices. In

particular, it produces symmetric and positive matrices

when it is applied to differential systems with such

properties, as is the case of Laplace’s and the biharmonic

operators. Also, the number of degrees of freedom

associated with each node is reduced. For Poisson equation,

TH-collocation yields an algorithm of fourth order precision

whose global matrix, in addition to being symmetric and

positive definite, is block nine-diagonal, with blocks of at

most 3!3 [5]. This is to be compared with orthogonal

spline collocation (OSC), which for the same order of

accuracy yields a global matrix that is neither symmetric,

nor positive, and whose blocks are 4!4. Furthermore, TH-

collocation also yields another algorithm [5], of second

order precision, whose global matrix is strictly nine-

diagonal (i.e. with blocks 1!1). Such reduction is not
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possible when OSC is applied. Due to these important

advantages, over standard collocation procedures, which

TH-collocation possesses, domain decomposition methods

(DDM) can be effectively applied to TH-collocation

algorithms using the Conjugate Gradient Method (CGM)

in a direct manner [3].

For the biharmonic equation semi-analytical discretiza-

tion procedures, of the Trefftz–Jirousek type [6], have been

developed by several authors [7–9] and a review of such

methods can be found in [10]. As for non-analytical

discretization methods, a recent paper by Lou et al. [11]

presents a discussion, and a brief comparison, of several

discretization methods that are available to deal with the

biharmonic equation. According to them, some of the

existing finite difference methods are very efficient and one

due to Bjorstad is of optimal complexity. The order of

accuracy of such methods is only second order. However, a

fourth order collocation algorithm was introduced in [11].

When approaching the discretization of the biharmonic

equation with non-analytical procedures, there are mainly

two options. The first one consists in using a 13-point stencil

[12,13] and in the second one, the ‘splitting approach’ [13],

the biharmonic equation is rewritten as a system of two

equations whose treatment requires solving two Poisson

equations successively. When this latter procedure is

applied, the effectiveness of the method and of its parallel

computation depends essentially on those of the Poisson

equations. The most popular collocation formulation for

partial differential equations of second order, which the

majority of the authors working in this field have used up to

now, is OSC; i.e. the Hermite bi-cubic orthogonal spline

collocation [14]. The OSC formulation is applied in a trial-

space of functions which are globally C1; this produces a

global matrix, which in its usual form is neither symmetric

nor positive definite, even when the differential operator has

these properties.

In this paper, we tackle the biharmonic equation using

the splitting approach and solve each one of the Poisson

equations by means of TH-collocation, profiting from the

advantageous features of the TH-collocation treatment of

Poisson equation. Thus far, the order of accuracy of our

algorithms has been only derived experimentally, as was

done in [5] and in Section 7. However, an interesting

characteristic of our method is that it actually produces the

same solutions as those obtained by Lou et al. [11]. Using

this fact, a rigorous theoretical proof of the fourth order

accuracy of our algorithm can be constructed. However,

such discussions will be presented elsewhere.

2. Notations

In our formulation the notations U3Rn and vU are used

for a domain of the Euclidean space of dimension n and its

boundary, respectively. Throughout this paper n is taken to

be equal to 2. LetPh{U1,.,UE} be a partition ofU. Given

such a partition, the boundaries of the subdomains are vUi,

iZ1,.,E. Clearly, vU3gE
iZ1vUi and the ‘internal bound-

ary’, S, is defined to be the closed complement of vU
relative togE

iZ1vUi. Then, vU will be referred as ‘external

boundary’. In the external boundary, the unit normal vector

is taken pointing outwards. As for the internal boundary, a

positive side of S and a unit normal vector, also denoted by

�
n, are defined almost everywhere (a.e.) on it with the

convention that
�
n points toward the positive side.

It is assumed that for each iZ1,.,E, there is a linear

space D(Ui), whose elements are functions defined in Ui.

Then, trial and test functions are taken from the linear space

D, defined by:

DhDðUÞhDðU1Þ4/4DðUEÞ (1)

Possible choices for D(Ui) are the Sobolev spaces

H5(Ui), iZ1,.,E. For the case of elliptic equations of

second order that will be considered, it is convenient to take

sR2. In fact, when the space D is defined by Eq. (1), a

function u2D is a finite sequence of functions

uh(u1,.,uE) such that ui2D(Ui), iZ1,.,E. It is assumed

that the trace of every ui2D(Ui) is defined a.e. on vUi.

Given any function u2D, uh(u1,.,uE), two traces are

defined at every point of S, which are denoted by uC and

uK, respectively. Since generally, uCsuK, it is useful to

define the ‘jump’ and the ‘average’ of any function u2D by

½u�Z uCKuK and _uZ ðuCCuKÞ=2 (2)

respectively. This notation will be applied not only for a

function, but for its derivatives as well. Clearly, the

definition of the jump of a function is dependent on the

orientation of S; however, the expressions that will be

handled in this paper are invariant with respect to such

orientation.

In some previous works, for simplicity, we have written

LuZ fU, in U, to mean:

LuZ fU; at each Ui; iZ 1;.;E (3)

For greater clarity, in the present paper we will be more

explicit and write directly, Eq. (3), since wLu is not, in

general, defined on S when u2D and w2D. Similarly, we

also write
PE

iZ1

Ð
Ui
wLu dx instead of

Ð
U wLu dx. Assume

a tensor-valued function
�
a
�

is defined in U and write

�
a
n
ha$

�
n, then it can be shown that

XE
iZ1

ð
vUi

w
�
a
n
$Vu dxZ

ð
vU

w
�
a
n
$Vu dxK

ð
S

½w
�
a
n
$Vu�dx (4)

3. Splitting formulation of the biharmonic equation

The formulation of well-posed problems in function

spaces containing discontinuous functions require that some

jump of the functions and their derivatives, across the

internal boundary, be prescribed. A well-posed boundary
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