
Eclpss: a Java-based framework for parallel ecosystem
simulation and modeling

Elaine Wenderholm

Computer Science Department, State University of New York at Oswego, Oswego, NY 13126 USA

Received 30 May 2003; received in revised form 10 May 2004; accepted 7 June 2004

Abstract

Eclpss (Ecological Component Library for Parallel Spatial Simulation) is a Java�-based framework designed to give ecologists
the ability to easily develop grid-based ecosystem simulations at multiple spatial and temporal scales. The framework automatically
targets the model to shared memory parallel machines. Because of the judicious use of Java, both the framework and framework-

generated models are platform independent. Users may write arbitrarily complex models without the need to be expert
programmers. These models are reusable, easily modifiable and extensible. Collaborative model development, sharing, and
dissemination with automatically-generated documentation are all web-accessible. The modelling environment consists of a suite of
GUI-based tools which are designed to be intuitive to ecologists. Ecologists specify the model; the Eclpss compiler uses these

specifications to generate code. Scientific unit measurements are incorporated into specifications and consistency checking is
performed; substance consistency is supported. This paper presents the structure and features of the Eclpss framework, the
migration of a Matlab model into this framework, and concludes with a discussion of ongoing and planned future work.

� 2004 Elsevier Ltd. All rights reserved.

Keywords: Spatial simulation framework; Java; Shared-memory parallel; Platform independence; Units; XML

1. Introduction

As ecological modelling becomes increasingly more
comprehensive and complex, it becomes more difficult to
reuse some or all pieces of a model.

In the ecological domain, there is the desire to both
parallelize and reuse the code from several disparate
programs whose commonality might only be that they
are written in the same programming language. Accom-
plishing this may be viewed, in part, as generating code
(either manually or automatically) which ‘‘glues’’
together different programs and, optionally, mapping
the program to a parallel architecture. This typically
poses more technical difficulties than the Fortran ‘‘dusty

deck’’ problem of the late 1980s1 which parallelizes just
one program. Since each ecological model is a different
program, the initial code design can render it inflexible
to incorporation into larger model(s). This also is
difficult to automate since general code is hard to
analyze.

Eclpss takes a different approach to model design and
building: disparate models are not combined; new
Eclpss models are developed; these Eclpss models may
then be combined.

Eclpss models are component-based (He et al., 2002).
An Eclpss Component contains pieces of user-written

E-mail address: wender@cs.oswego.edu (E. Wenderholm).

URL: http://www.cs.oswego.edu/wwender.

1 Parallelizing compilers analyze sequential code and, using various

loop transformations, automatically restructure it into parallel

implementations. (See, for example, Allen and Kennedy (1987) and

Ruhl and Annaratone (1990)).

1364-8152/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.envsoft.2004.06.006

www.elsevier.com/locate/envsoft

Environmental Modelling & Software 20 (2005) 1081–1100

mailto:wender@cs.oswego.edu
http://www.cs.oswego.edu/~wender
http://www.elsevier.com/locate/envsoft

code. The framework imposes no restriction on the
complexity of the code itself, but only on the component
interface. Components are independent and may not
directly reference other components; interaction is
indirect via updates to state variables. An Eclpss model
may be viewed as a circuit: components are the ‘‘chips’’;
state variables are the ‘‘wires’’ that connect components.
This design allows components (and the models which
use them) to be freely shared, interoperable, and
interchangeable. Eclpss supports top–down and bot-
tom–up design, debugging, and experimentation. Ecol-
ogists can easily rearrange and experiment with model
structure, grids, grid cell size and scale.

A programming variable in scientific programs not
only has a storage type, but often has a unit of scientific
measurement. Different ecological models may (cor-
rectly) use different measurement units, different mea-
surement systems, or both, for the same programming
variable in different parts of the program. Models with
multi-ecological media are typical of the use of different
measurement (and hence modelling) units: the density in
air (of, say, a nitrogen compound) may be measured in
kg/m3; the same compound in soil surface in mg/cm3.
Unit (and data) conversion at the ecological interface is
necessary. Poorly-defined programming interfaces, such
as the Mars Climate Orbiter, have lead to the incorrect
use of different measurement systems. Since compilers
for programming languages only perform storage type-
checking, measurement unit type and consistency
verification often requires that checking be done by
hand.

The manner in which Eclpss models are developed
has many of the same characteristics as specialized
programming tools.

Specialized programming tools in other application
areas (such as spreadsheets, relational database man-
agement systems and symbolic mathematics programs)
have allowed a community of users to write applications
that previously required specialist programmers and
many person-months (person-years) of development
and support time. Many users would be unable to
develop such applications without the use of these
specialized systems. In fact, these specialized tools are so
widespread that they are taken for granted. They share
several common characteristics:

� Each addresses a restricted and well-defined prob-
lem domain.

� The user interface is designed to be natural to the
target user community.

� Features from declarative programming (viz., spec-
ifying ‘‘what’’ to compute instead of ‘‘how’’ to
compute) are incorporated into the tools, thereby
freeing the user from programming details.

� Some commonly support an automatic parallel
implementation.

� Many increasingly are becoming web-based and/or
web-accessible.

As a result, large communities of users may now
develop fairly complex applications; most users would
otherwise be unwilling or unable to develop such
sophisticated applications.

These same characteristics are incorporated into the
Eclpss framework:

� The modelling domain centers on grid-based simu-
lations over time at multiple spatial scales. The
calculation of each grid point depends on data
within a smallish, localized neighborhood. In
addition to the ecosystem modelling domain, other
application areas include thermal diffusion, prob-
lems which give rise to PDEs, initial-value problems
for ODEs, and cellular automata (El Yacoubi et al.,
2003) with Cartesian neighborhoods.

� Models are specified using a suite of GUI-based
tools which facilitate and support the design
practices that are natural to ecologists.

� The ease of developing models is due largely to the
declarative nature provided by the framework.

Parts of a model are expressed at a high level of
abstraction as specifications. Specifications relieve
the user of the need to write (and rewrite) code that
manages storage and other mundane but error-prone
programming tasks such as the explicit declaration
of data structures and loops; the Eclpss compiler
uses the specifications to generate this code.

� The framework takes advantage of cutting-edge
technology afforded by Java, which supports graph-
ical, web-centric development, collaboration, and
dissemination of models.

� Models are automatically targeted to the host
machine.

� Most implementation details are invisible to the
user.

As a consequence the user does not need a deep
understanding of most of this generated code.

This understanding can be especially difficult for the
code that is generated for parallel execution. This
invisibility permits framework developers to add in-
dependent enhancements to both the framework code
and the compiler.

In addition to simplicity for the user, the Eclpss
compiler must generate efficient (parallel) code. The
programming interface is simplified and restricted to
framework get and setmethods, which not only eases the
conceptual task of the user, but also the analytical task of
the Eclpss compiler. The framework rigorously enforces
just enough structure, so that a model is relatively easy to
analyze, but it does not impose toomuch structure, so that
users have a high degree of modelling freedom.

1082 E. Wenderholm / Environmental Modelling & Software 20 (2005) 1081–1100

Download English Version:

https://daneshyari.com/en/article/10371136

Download Persian Version:

https://daneshyari.com/article/10371136

Daneshyari.com

https://daneshyari.com/en/article/10371136
https://daneshyari.com/article/10371136
https://daneshyari.com

