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Abstract

Generalised linear models, with “log” link and either Poisson or negative binomial errors, are commonly used for relating accident rates to
explanatory variables. This paper adds to the toolkit for such models. It describes how confidence intervals (for example, for the true accident
rate at given flows) and prediction intervals (for example, for the number of accidents at a new site with given flows) can be produced using
spreadsheet technology.
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1. Introduction

Generalised linear models have gathered recognition in
recent years(Maycock and Hall, 1984; Hauer et al., 1988;
Maher and Summersgill, 1996)as useful tools for relating
the number of accidents, of a specified type, to explanatory
variables such as vehicle flows. For the single flow model,
the true mean number of accidentsµ is modelled asβ0x

β1,
wherex denotes the flow. The distribution of the observed
number of accidents, for a given flow, is assumed to be either
Poisson, or more generally, negative binomially distributed
about this mean value. The negative binomial distribution
occurs naturally when we allow for variation of safetyM
between sites, with a given flow, to be modelled by a gamma
distribution, and then variation of the number of accidents
Ywithin a site, with safetyM, to be modelled by a Poisson
distribution with meanM. A detailed description of these
models has been given in the companion paper(Wood, 2002),
where methods for assessing goodness of fit were described.

Once goodness of fit is established for a model, it is of
interest to provide confidence intervals (for model parame-
ters) and prediction intervals (for dependent variables); this is
routinely carried out when working with linear models. Such
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intervals provide information about the extent of variation in
these quantities. In this context, the intervals of interest, for
a given flow, are:

(i) A confidence interval forµ, the true accident rate.
(ii) (a) For a Poisson model, a prediction interval fory, the

accident rate at a new site.
(b) For a negative binomial model, a prediction inter-

val form, the safety of a new site, and a prediction
interval fory, the accident rate at a new site.

The purpose of this paper is to provide formulae, in Section2,
which enable construction of these intervals, and to illustrate
their use with real accident data in Section3. The required
calculations can be carried out on a spreadsheet. Exposition
is generally in terms of models with a single flow; models
with more than one explanatory variable are handled in an
extended, but similar, fashion. Notation and terminology used
in this paper are as inWood (2002).

Standard texts, for example,McCullagh and Nelder
(1989), discuss confidence intervals for generalised linear
model parameters; the author, however, has not found the ap-
proach discussed here in the literature, other than inMaher
and Summersgill (1996). Here, we clarify, amplify and ex-
tend that work.

Specifically, approximate confidence and prediction inter-
vals appropriate for a given flow are developed. We caution
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that the confidence level necessarily decreases if we wish to
make statements about many flow values. For this, so-called
simultaneous (and necessarily wider) confidence bands are
needed. The development of simultaneous confidence bands
is a topic of current research; the work ofSun et al. (2000)
produces such confidence bands for the mean in a generalised
linear model.

This paper can be read in two ways. A reader interested in
the practical construction of confidence and prediction inter-
vals should skim Section2, then work carefully through the
examples of Section3, referring to Section2 andAppendix
A for formulae as needed (Table 4provides an overall sum-
mary). For the reader interested in the underlying theory, care-
ful reading of Section2 andAppendix Ais recommended.

2. Confidence and prediction intervals

A confidence interval for the true mean, for both the Pois-
son and negative binomial models, is developed in Section
2.1. In Section2.2, a prediction interval for a predicted num-
ber of accidents at a new site is derived for the Poisson model,
while in Section2.3, prediction intervals for safety and pre-
dicted number of accidents at a new site are produced for
negative binomial models.

2.1. Confidence interval forµ

The generalised linear model we have described uses
a “log” link function; the logarithm ofµ is linear in the
model parametersβ′

0 and β1, sinceη = logµ = logβ0 +
β1 logx = β′

0 + β1 logx, for the single flow model. Stan-
dard generalised linear model theory gives that asymptoti-
cally the estimatesb′

0 andb1, of β′
0 andβ1, respectively, have

a bivariate normal distribution(Dobson, 1990), in particular

[
b′

0

b1

]
∼ N

([
β′

0

β1

]
, I−1

)
,

so they are unbiased, with covariance matrix the inverse of
the information matrixI. It follows that η̂ = b′

0 + b1 logx

has asymptotically a normal distribution and since ˆη = log µ̂,
whereµ̂ = eb′

0 xb1, µ̂ has an approximately lognormal dis-
tribution.

This enables us to write down an approximate 95% con-
fidence interval forη, when the flow isx, as

b′
0 + b1 logx ± 1.96

√
Var(b′

0 + b1 logx),

whence a 95% confidence interval forµ = eη is given by[
eb′

0+b1 logx−1.96
√

Var(b′
0+b1 logx),

eb′
0+b1 logx+1.96

√
Var(b′

0+b1 logx)
]
.

The lower boundary is closer to the estimate ˆµ of µ than is
the higher boundary, reflecting the right skewed lognormal
distribution of the estimate ˆµ. Here,

Var(b′
0 + b1 logx)

= Var(b′
0) + 2 logx Cov(b′

0, b1) + (logx)2 Var(b1)

= I−1
11 + 2 logx I−1

12 + (logx)2 I−1
22 .

Illustrative real examples are given in Section3. Note that
η̂ = (1, logx)(b′

0, b1)T (where “T” denotes transpose) so in
practice Var(ˆη) is most easily calculated as

Var(η̂) = (1, logx)I−1(1, logx)T.

There are two ways to find the components ofI−1. If the
model is fitted using a statistical package then options are
generally available which output the covariance matrixI−1 of
the parameters. On the other hand, if using the first principles
method described inWood (2002, (A.3)), then the required
covariance matrix is (XTWX)−1, whereX is the design matrix
andWa diagonal matrix.

A final remark in this subsection: the lognormal distribu-
tion of µ̂ discussed can be approximated by a normal distri-
bution, or

µ̂ ∼ N(µ0 = µ, σ2
0 = µ2 Var(η̂)),

as inMaher and Summersgill (1996, Eq. (14)). This approxi-
mate sampling distribution for ˆµ is fundamental in the sequel.

2.2. Poisson model

We consider the case of the Poisson model and an interval
for a predicted number of accidents,y. Under the model, given
a true mean accident rate ofµ, the conditional distribution of
accidentsY is Poisson with meanµ. A confidence interval for
the number of accidentsY, however, must now accommodate
the approximately normal variation in ˆµ, our estimator ofµ,
asN(µ0, σ

2
0). Table 1summarises the variables involved.

The marginal distribution ofY is thus a mixture of Poisson
distributions, on the mean, by a normal distribution. It can be
shown that the distribution ofY, supported by{0, 1, 2, . . .}
has meanµ0 and varianceσ2

0 + µ0. (The key to this calcula-
tion is the observation that a central moment of a mixture is
the mixture of the central moments of the distributions being
mixed.) Our intuition does tell us that this variance should
depend on that of ˆµ, namelyσ2

0, and also should increase

Table 1
The two levels of variation, first inµ, then inY givenµ, to be considered
when forming a prediction interval fory in the Poisson model

Variable description Variable notation Distribution

Accident rate, given true rateµ Y |µ Poisson(µ)
Estimator of true mean accident rate ˆµ N(µ0, σ

2
0)
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