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a  b  s  t  r  a  c  t

Recently production of hydrogen from water through the Cu–Cl thermochemical cycle is developed as a new technol-

ogy.  The main advantages of this technology over existing ones are higher efficiency, lower costs, lower environmental

impact and reduced greenhouse gas emissions. Considering these advantages, the usage of this technology in new

industries such as nuclear and oil is increasingly developed. Due to hazards involved in hydrogen production, design

and  implementation of hydrogen plants require provisions for safety, reliability and risk assessment. However, very

little  research is done from safety point of view. This paper introduces fault semantic network (FSN) as a novel method

for  fault diagnosis and fault propagation analysis by using evolutionary techniques like genetic programming (GP)

and  neural networks (NN), to uncover process variables’ interactions. The effectiveness, feasibility and robustness

of  the proposed method are demonstrated on simulated data obtained from the simulation of hydrogen production

process in Aspen HYSYS®. The proposed method has successfully achieved reasonable detection and prediction of

non-linear interaction patterns among process variables.
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1.  Introduction

Inferring the interaction structures among different pro-
cess variables (PVs) from their observed dynamics is one of
the important tasks in predicting fault propagation behav-
iors of complex chemical, petrochemical or nuclear plants.
To achieve the above goals, PVs emanating from chemical,
petrochemical or nuclear plants are recorded and analyzed.
Analysis of these variables is critical and challenging for data
analysis community and such a problem is covered by sys-
tem identification theory. In a plant operation, there could be
serious consequences because of human error or any plant
malfunction including equipment or component failure. Also
the overall plant availability may reduce because of the force
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shutdown or the final product quality may suffer. Catastrophic
events may also occur due to release of toxic chemical or fire
outbreak. In usual case, abnormal deviation of functional pro-
cess variables or key performance indicators (KPIs) triggers an
alarm in the control room and the process operator has to take
necessary and timely remedial actions. In order to do that, the
operator must know the exact cause and consequence of the
deviations, their relationships and propagation behaviors.

Hydrogen is currently gaining much attention as a new
energy source which can be replaced with oil and other fossil
fuels in near future not only in different industries but also
in transportation sector. Like other industrial process, hydro-
gen production process is also involved with different hazards
that may lead to irreparable losses that not only affect the
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equipment and production but raises environmental, occu-
pational safety and health related concerns. Given this it is
obvious that performing preventive actions and implementing
well-established monitoring and control strategies to prevent
accidents and reducing the risk associated with process seems
necessary.

Zalosh et al. made a statistical investigation in 1978 about
industry related hydrogen accidents in USA and he concluded
that in about 80% of the hydrogen accidents ignition occurred
and hereof about 65% of these ignitions caused an explosion.
Forty percent of all the hydrogen leakages were not detected
prior to the accident and therefore it was argued to install
appropriate detectors in hydrogen systems (Markert et al.,
2007). There are many  ways that make hydrogen different
from conventional fuels such as representing a greater haz-
ard over methane and gasoline due to the wider flammability
limits, lower ignition energy and higher deflagration index.
Consequently, greater risk due to the increased probability of
a fire and explosion would be one of the results. Given this, it
seems necessary to perform a detailed hazard identification
method for every stage in the hydrogen supply chain.

This paper proposes a systematic hazard identification and
risk assessment method based on FSN. The rest of the paper
is organized as follows: Section 2 describes the theory behind
FSN followed by Section 3 that describes the basics of GP and
Section 4 that discusses non-linear autoregressive model with
exogenous inputs (NARX). Section 5 formulates the objective
function followed by hydrogen process simulation in Section
6. Section 7 presents the simulations and results followed by
Section 8 that discusses the practical applications of FSN and
conclusion is drawn in Section 9.

2.  Fault  semantic  network  (FSN)

The concept of semantic network was first proposed by
Richens (1956). It is a network structure that represents rela-
tions between concepts. The concept of semantic network was
further developed by Collins and Quillian (1969) where they
introduced semantic network in a tree structure (directed or
undirected graph) consisting of nodes and arcs. The nodes rep-
resent concepts and the connections show relations between
nodes. The FSN was originally realized by Gabbar (2007) and
further elaborated by Gabbar (2010) and Gabbar and Khan
(2010) is a mean of representing fault knowledge based on rela-
tionships between objects. In FSN, the nodes correspond to
different faults/causes/consequences and the links between
them describe the dependencies. Initially, FSN is constructed
based on ontology structure of fault models on the basis of pro-
cess object oriented methodology (POOM) where failure mode
(FM) is described using symptoms, enablers, variables, causes,
consequences, and repair actions. Rules are associated with
each transition of the causation model within FSN. The rules
can be quantitative (probabilistic) or qualitative. For example,
failures related to gear tooth breakage might be associated
with a qualitative rule such as

IF Structure = Gears AND PV = Vibration AND Symptom = Mesh
Frequency Sidebands AND Dev = Very-High THEN FM = Gear
Tooth Breakage AND Consequence = Damage/Production Loss AND
Repair = Replacement.

These rules are initially defined in generic form based on
domain knowledge, i.e., regardless of plant specific knowledge
and then further explained or trained for plant specific knowl-
edge based on observations. As described above, the structure
of FSN represents relations between variables quantitatively

Fig. 1 – Process to construct the FSN.

or qualitatively and this can be done through (1) probabilis-
tic approach, (2) fuzzy approach and (3) mathematical model
approach. Each approach is discussed as follows:

Probabilistic approach: In probabilistic approach, a proba-
bility value is assigned to each node depending upon its
hierarchy in the network as a parent node or a child node.
Bayesian belief networks (BBN) are used in this approach.

Fuzzy approach: This type of reasoning is a pure qualitative
reasoning. In fuzzy approach, rules are associated with each
transition of the causation model within FSN. In other word,
relations between variables are described by specifying if-then
statements.

Model formulation: This type of reasoning is a pure
quantitative reasoning. Relationship between two  vari-
ables is specified by mathematical equation such as y =[
log(x + cos x) − cos2 x

]
, where x is an independent variable

and y is a dependent variable. The mathematical models can
be derived from system identification theory using genetic
programming (GP), neural networks (NN), adaptive neuro-
fuzzy inference system (ANFIS) or other statistical based
methods.

The process of constructing FSN is shown in Fig. 1, where
training data are recorded from the real world or simulated
process.

After real world data collection or process simulation,
PVs interaction learning framework based on GP follows to
uncover the complex PVs interaction patterns. The learned
GP mathematical models are then used for constructing FSN.
After the system has learned the dynamics of the PVs and
has uncovered the interaction strengths among PVs, the sys-
tem can be deployed on real-time process data. In real-time
deployment, the PVs are monitored and the state observation
for each PV is passed to the FSN. The FSN is responsible to
interpret the results in order to calculate the failure probabil-
ities and associated risks. The query process also updates the
FSN database or GP mathematical models if new evidence is
encountered. The ultimate goal of the study is to develop a
real-time fault propagation analysis and hazard identification
method through FSN. The overall process can be described in
three steps as follows:

• Extracting real-time process data: The real-time data are
extracted from sensors and controllers installed on all
equipment in the underlying plant to monitor the process
conditions.

• Relationship among process variables through GP:  In order to
uncover the relationship among process variables, GP is
used as pattern recognition techniques to identify their
relationship quantitatively. This step is critical in order to
analyze propagation of faults among process variables.
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