ARTICLE IN PRESS

Applied Thermal Engineering xxx (2013) 1-9

Contents lists available at ScienceDirect

Applied Thermal Engineering

journal homepage: www.elsevier.com/locate/apthermeng

The effectiveness method to predict the behaviour of a desiccant wheel: An attempt of experimental validation

Celestino R. Ruivo a,b,*, Giovanni Angrisani c

- a Departamento de Engenharia Mecânica, Instituto Superior de Engenharia, Universidade do Algarve, Campus da Penha, 8005-139 Faro, Portugal
- ^b ADAI-LAETA Departamento de Engenharia Mecânica, Universidade de Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra, Portugal
- ^c Università degli Studi del Sannio, DING, piazza Roma 21, 82100 Benevento, Italy

HIGHLIGHTS

- The overall behaviour of a desiccant wheel is investigated.
- Two pairs of effectiveness parameters are considered.
- The study is supported by experimental data measured in an air handling unit.
- An attempt of validation of the effectiveness method is performed.
- A correction of the measured outlet state of the process airflow is required.

ARTICLE INFO

Article history: Received 3 July 2013 Accepted 15 October 2013 Available online xxx

Keywords:
Desiccant wheel
Experimental data
Effectiveness method
Validation
Empirical correction

ABSTRACT

The desiccant wheel is a key component in solid-desiccant systems. At present, the analysis of the behaviour of air handling units based on desiccant wheels is a complex task. It is difficult to access a simple model that can represent the behaviour of commercialized desiccant wheels with sufficient accuracy.

Experimental data measured in an air handling unit equipped with a desiccant wheel are considered in the present work. The air handling unit belongs to a test facility with a microcogeneration system located at Università degli Studi del Sannio (in Benevento, Southern Italy). Thermal energy from the microcogenerator is used to heat up the regeneration airflow. An attempt of investigating the validity of the simplified effectiveness method in predicting the global behaviour of a desiccant wheel is performed. Two approaches are used with different pair of effectiveness parameters.

Only one sensor of temperature and one sensor of relative humidity were used in each measuring section of the air handling unit. This constraint is most crucial at both outlet sections of the desiccant wheel due to the strong dependence of the air state on the angular position.

An empirical correction of the measured state of the process air at the outlet of the desiccant wheel is used. The corrected data are used in the investigation of the validity of the effectiveness method by using constant values in a large set of cases where the rotation speed of the desiccant wheels and the fans are kept constant. Important deviations between the predicted and the experimental results were found in a significant number of cases, therefore there is the need of improving the method by taking into account the effect on the effectiveness parameters of varying the inlet states of both airflows.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays the interest in HVAC&R systems based on desiccant wheels is widely increasing due to the possibility of using

E-mail address: cruivo@ualg.pt (C.R. Ruivo).

http://dx.doi.org/10.1016/j.applthermaleng.2013.10.028

1359-4311/\$ - see front matter © 2013 Elsevier Ltd. All rights reserved.

renewable energy sources with low environmental impact and high potential of fossil fuel consumption and greenhouse gas reduction.

Beccali et al. [1] presented instantaneous, daily and monthly energy performance indicators of a Solar Desiccant Evaporative Cooling system, for the cooling operation mode during five months and heating operation mode during three winter months. The system is composed of an air handling unit coupled with a radiant ceiling that provides most of the energy required to remove the sensible cooling/heating load. Flat plate collectors deliver part of

^{*} Corresponding author. Departamento de Engenharia Mecânica, Instituto Superior de Engenharia, Universidade do Algarve, Campus da Penha, 8005-139 Faro, Portugal. Tel.: +351 289 800100; fax: +351 289 888405.

Nomenclature sorption cycle duration (s) $\tau_{\rm cvc}$ a_1 , b_1 , c_1 parameters of Eq. (3) Subscripts a_2 , b_2 , c_2 parameters of Eq. (4) parameter related with characteristic potentials F1, F2 $D_{\rm d}$ diameter of the duct (m) h parameter related with enthalpy F1, F2 characteristic potentials id ideal specific enthalpy (J kg⁻¹) h maximum max mass airflow rate (kg s⁻¹) parameter related with temperature m Т partial pressure of water vapour (Pa) parameter related with water vapour content p_{v} w saturation pressure of water vapour (Pa) parameter related with the ratio p_v/p_{vs} d p_{vs} **RMSD** root mean square deviation 1 related with process air T 1in inlet of process air temperature (°C) time (s) 1out outlet of process air t airflow velocity (m s⁻¹) и 2 related with regeneration air water vapour content of moist air (d.b.) (kg kg^{-1}) 2in inlet of regeneration air w. outlet of regeneration air 2out Greek symbols correction factor for the outlet state of process air **Superscripts** α percentage of cases evidencing unacceptable predicted parameter χ predicted parameter after correction of the outlet state agreement (%) δ maximum deviation between predicted and measured of the process air values effectiveness parameter **Abbreviations** η ρ air density (kg m^{-3}) Eff-A approach using (η_h, η_{ψ}) Eff-B ratio of mass airflow rates σ approach using (η_{F1}, η_{F2}) ratio $p_{\rm v}/p_{\rm vs}$

the heat required to regenerate the desiccant wheel during the cooling mode and space heating during heating mode. Monthly results are elaborated and seasonal performance indicators such as electric and thermal COP and primary energy savings for cooling and heating operation are presented. Primary energy savings in cooling mode operation, in comparison to a conventional air handling unit, came up to nearly 50%.

Aprile et al. [2] investigated the control optimization of a solar assisted air-conditioning concept combining a desiccant and evaporative cooling system with an electrical reversible water/ water heat pump. In summer, the heat pump cools the supply air stream and pre-heats the regeneration air when dehumidification is needed; in winter, the heat pump provides auxiliary heat if a minimum temperature is available in the heat storage, otherwise a backup boiler is used. The depicted system has been modelled and an extensive simulation work has been carried out to identify an optimal control strategy. According to the simulation results, the system can deliver primary air at the requested temperature and humidity while holding the overall primary energy consumption at significant low levels compared to reference system solutions, using a gas boiler and an air-condensed chiller.

Primary energy and emissions savings can also be achieved when regeneration of the desiccant wheel is performed by means of thermal wastes from cogeneration systems.

Henning et al. [3] showed the results of a simulation model, carried out to design a hybrid desiccant-based HVAC system. A microcogenerator (MCHP, Micro Combined Heat and Power) supplies electric energy to an electric heat pump and other electric devices. Waste heat recovered from the MCHP is used in summer to regenerate the desiccant wheel. Surplus of thermal energy is used to produce domestic hot water. During winter, waste heat is directly used for heating using fan-coils as well as an air handling unit. Regarding energy performance, results indicate an electricity saving greater than 30% in comparison to state-of-the-art solutions based on conventional technology.

Angrisani et al. [4] performed laboratory tests to experimentally evaluate a small scale polygeneration system based on a natural gasfired MCHP and a desiccant-based HVAC system. Cogenerated thermal energy is used for the desiccant wheel regeneration, while electric energy for auxiliaries, chiller and external units. The main results state the increase of the COP of the chiller in desiccant-based HVAC systems. The paper identifies the operating conditions (outdoor and supply air thermal-hygrometric conditions, electric grid efficiency and partial load operation of the MCHP) which guarantee significant primary energy savings (up to around 30%) and CO₂ equivalent emission reductions (up to around 40%) of the polygeneration system compared to a conventional HVAC system.

However, the dynamic energy analysis of air handling units based on desiccant wheels remains difficult. The use of simple methods to describe the global behaviour of a desiccant wheel, such as the effectiveness method, is an interesting approach, but it requires the previous knowledge of the dependence of the effectiveness parameters on the operating conditions.

Several test facilities integrating a desiccant wheel are operated in Germany [5], Italy [1–4,6–11] and Turkey [12]. Some attempts regarding the validation of simulation models of desiccant wheels have been done by comparing experimental data with the predicted results. This kind of studies is not easy to be carried out with high accuracy in real systems, mainly due to the difficulties in measuring each outlet state of the airflow exiting the desiccant wheel with only one sensor of temperature and one sensor of humidity. Moreover, very few works indicate mass and energy imbalance errors or the whole set of data that would enable their calculation. The exhaustive experimental research in lab conditions [13] showed significant mass and energy imbalances between the regeneration and the process air streams crossing a desiccant wheel.

In most experimental researches the process airflow rate, the inlet state of process air, the inlet state of regeneration air and the outlet state of process air are measured only in one point of each air stream.

Download English Version:

https://daneshyari.com/en/article/10390400

Download Persian Version:

https://daneshyari.com/article/10390400

<u>Daneshyari.com</u>