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h i g h l i g h t s

� New Trans-mesh method and Moving computational domain method have been introduced.
� In the Trans-mesh method, bodies can move freely with adding and removing meshes.
� The feature of the MCD method is to move computational domain with the body.
� We can simulate a falling sphere with concentration in an infinite long bending pipe.
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a b s t r a c t

The purpose of this paper is to simulate a flow around a falling sphere with concentration in an infinite
long pipe using a new moving mesh system. New moving mesh system is called a Trans-mesh method
and a Moving Computational Domain method. In the Trans-mesh method, the bodies can move freely in
a main mesh that covers the entire flow field. On the other hand, in the Moving Computational Domain
method, the whole of the computational domain including bodies inside moves in the physical space
without the limit of region size. These methods are constructed based on the four-dimensional control
volume in space-time unified domain such that the method satisfies both the physical and geometrical
conservation laws simultaneously. As a result of simulations, physically-meaningful flows are obtained,
and it is confirmed that the new moving mesh system is useful for this simulation.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Today, one of the interesting problems in Computational Fluid
Dynamics is an unsteady flow and it is very important to calculate a
moving boundary problem. Especially, in the case that body moves
in the fluid is interesting on engineering. When we simulate such
flow field, wemight encounter some problems to be overcome. One
of the problems is on mesh system. When the body moves in the
flow field, a conventional single body-fitted grid system is hard to
adjust the motion of body. A shape of the computational mesh is
highly skewed in the case that the body travels long distance in the
flow field. To overcome this problem, we have proposed a Trans-
mesh method [1] for three-dimensional space. The method is that
the front mesh plane of the moving body is eliminated from the
mainmesh to avoidmesh folding according to decrease of themesh
spacing due to the movement of the body, while a mesh plane is

added newly between the rear plane of the moving body and the
main mesh in order to keep the allowable maximummesh spacing.
Next, we consider a flowaround amoving sphere in the long pipe. It
is necessary tomake the computational mesh for whole of the pipe.
Then, a huge number of computational mesh is needed. As the
result, this simulation by using traditional method spends a lot of
time. We have proposed the Moving Computational Domain
method [2]. This method is kind of moving mesh method. The
feature of this method is to move computational domain with the
body. The Moving Computational Domain method can consider the
region without limit. The only necessary assumption is that the
conditions just in front of the computational domain should be
known a priori, such as, stationary fluid state or uniform flow and
so on. As these flow solvers, we modified the Moving-grid Finite-
volume method [3]. The method is constructed based on the four-
dimensional control volume in space-time (x,y,z,t) unified domain
such that the method satisfies the divergence-free character in the
(x,y,z,t) space and both the physical and geometrical conservation
laws simultaneously [4]. Due to the use of four-dimensional control* Corresponding author. Tel.: þ81 6 6431 7354; fax: þ81 6 6431 5998.
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volume, the method has a lot of merits or freedom. The purpose of
this paper is to extend the method to the system including
advection-diffusion equation of concentration and to develop the
Trans-mesh method and Moving Computational Domain method.
The methods are applied to a falling sphere with concentration by
gravity in an infinite long pipe.

2. New moving mesh system

2.1. Governing equations

Governing equations are the continuity equation, the incom-
pressible NaviereStokes equations and the advection-diffusion
equation of concentration. These are written as follows:
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where, q is the velocity vector, Ea, Fa, and Ga are advection flux
vectors in the x, y, and z directions, respectively, Ev, Fv, and Gv are
viscous flux vectors, and Ep, Fp, and Gp are pressure flux vectors, Ec,
Fc, and Gc are convection flux, and Ed, Fd, and Gd diffusion flux. The
elements of the velocity vector and flux vectors are:
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where, u, v, and w are velocity component of x, y, and z direction
respectively, p is pressure, and c is concentration. The subscript x, y
and z indicate derivatives with respect to x, y, and z respectively.
Here, Re and Sc are Reynolds number and Schmidt number
respectively. On the other hand, combined motion of the trans-
lation and rotation of a body is considered. The rigid body equations
of motion are written as follows:

dpB
dt

¼ fB; (5)

dLB
dt

¼ NB: (6)

here, pB is the momentumvector of the body, fB is the external force
vector, LB is the angular momentum vector, and NB is the torque
vector, respectively.

2.2. Moving-grid finite-volume method

To assure the geometric conservation laws, we adopt a control
volume in the space-time unified domain (x, y, z, t), which is four-
dimensional in the case of three-dimensional flows. Now, Eq. (2)
can be written in divergence form as,
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The present method is based on a cell-centered finite-volume
method and, thus, the flow variables are defined at the center of the
cell in the (x, y, z) space. The control volume becomes a four-
dimensional polyhedron in the (x, y, z, t)-domain, as schemati-
cally illustrated in Fig. 1.

We apply volume integration to Eq. (7) with respect to the
control volume illustrated in Fig. 1. With use of the Gauss theorem,
Eq. (7) can be written in surface integral form as,
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here, ~nu is an outward unit vector normal to the surface, v~U, of the
polyhedron control volume ~U and, ~nl ¼ ð~nx; ~ny; ~nz; ~ntÞl, (l ¼ 1,2,… 8)
denotes the surface normal vector of control volume and its length
equals to the boundary surface area in four-dimensional (x,y,z,t)
space.

The upper and bottom boundary of the control volume (l ¼ 7
and 8) are perpendicular to t-axis, and, therefore they have only ~nt
component and its length is corresponding to the volume of the cell
in the (x,y,z)-space at time tn and tnþ1 respectively. Thus, Eq. (9) can
be expressed as,
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In addition, Moving-Grid Finite-Volumemethod is applied to Eq.
(3). Thus, Eq. (3) can be expressed as,
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