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Abstract

We solve the one-dimensional cessation Couette and Poiseuille flows of a Bingham plastic using the regularized constitutive equation
proposed by Papanastasiou and employing finite elements in space and a fully implicit scheme in time. The numerical calculations confirm
previous theoretical findings that the stopping times are finite when the yield stress is nonzero. The decay of the volumetric flow rate, which
is exponential in the Newtonian case, is accelerated and eventually becomes linear as the yield stress is increased. In all flows studied, the
calculated stopping times are just below the theoretical upper bounds, which indicates that the latter are tight.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In viscometric flows, one can bring a fluid to a halt by
setting the moving boundary to rest in the case of Couette
flows, or by reducing the applied pressure gradient to zero
in Poiseuille flows. In a Newtonian fluid, the correspond-
ing steady velocity fields decay to zero in an infinite amount
of time [1]. In a Bingham plastic, the velocity fields go to
zero in a finite time, which emphasizes the role of the yield
stress[2,3]. Glowinski[2] and Huilgol et al.[3] have provided
explicit theoretical finite upper bounds on the time for a Bing-
ham material to come to rest in various flows, such as the plane
and circular Couette flows and the plane and axisymmetric
Poiseuille flows. To be specific, each upper bound depends on
the density, the viscosity, the yield stress and the least eigen-
value of the Laplacian operator on the flow domain[2,3]. As
for the underlying cause for the finite extinction time, it can
be shown that the yield surface moves laterally with a finite
speed bringing the fluid to a halt, and that kinematical con-
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ditions play a crucial role[4]. In a similar fashion, the upper
bounds derived by Huilgol[5] for the cessation of axisym-
metric Poiseuille flows with more general viscoplastic fluids
must be caused by the lateral movement of the yield surface.

The objective of the present work is to compute numer-
ically the stopping times and make comparisons with the
theoretical upper bounds provided in the literature for the
cessation of three flows of a Bingham fluid: (a) the plane
Couette flow; (b) the plane Poiseuille flow; (c) the axisym-
metric Poiseuille flow. Instead of the ideal Bingham-plastic
constitutive equation, we employ the regularized equation
proposed by Papanastasiou[6], to avoid the determination
of the yielded and unyielded regions in the flow domain. It
should be noted that preliminary results for the case of the
plane Poiseuille flow can also be found in Ref.[7].

The paper is organized as follows. In Section2, we dis-
cuss the regularized Papanastasiou equation for a Bingham
plastic. In Section3, we present the dimensionless forms of
the governing equations for the three flows of interest along
with the corresponding theoretical upper bounds. In Section
4, we present and discuss representative numerical results
for all flows. The numerical stopping times are just below
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the theoretical upper bounds, i.e. the latter are tight. Some
discrepancies are observed only for low Bingham numbers
when the growth parameter in the Papanastasiou model is not
sufficiently high. Finally, Section5 contains the conclusions
of this work.

2. Constitutive equation

Letu andτ denote the velocity vector and the stress tensor,
respectively, anḋγ denote the rate-of-strain tensor,

γ̇ ≡ ∇u + (∇u)T, (1)

where∇u is the velocity-gradient tensor, and the superscript
T denotes its transpose. The magnitudes ofγ̇ andτ are respec-
tively defined as follows:

γ̇ =
√

1

2
II γ̇ =

√
1

2
γ̇ : γ̇ and τ =

√
1

2
II τ =

√
1

2
τ : τ,

(2)

where II stands for the second invariant of a tensor.
In tensorial form, the Bingham model is written as follows:

{
γ̇ = 0, τ ≤ τ0,

τ =
(

τ0
γ̇

+ µ
)

γ̇, τ ≥ τ0,
(3)

whereτ0 is the yield stress, andµ is a constant viscosity.
In any flow of a Bingham plastic, determination of the

yielded (τ ≥ τ0) and unyielded (τ ≤ τ0) regions in the flow
field is necessary, which leads to considerable computational
difficulties in the use of the model. These are overcome
by using the regularized constitutive equation proposed by
Papanastasiou[6]:

τ =
{

τ0[1 − exp(−m γ̇)]

γ̇
+ µ

}
γ̇, (4)

wherem is a stress growth exponent. For sufficiently large
values of the regularization parameterm, the Papanastasiou
model provides a satisfactory approximation of the Bingham
model, while at the same time the need of determining the
yielded and the unyielded regions is eliminated. The model
has been used with great success in solving various steady
and time-dependent flows (see, for example,[8,9] and the
references therein).

3. Flow problems and governing equations

The governing equations along with the boundary and ini-
tial conditions of the three time-dependent, one-dimensional
Bingham-plastic flows of interest are discussed below. The
theoretical upper bounds of Glowinski[2] and Huilgol et al.
[3] for the stopping times are also presented.

3.1. Cessation of plane Couette flow

The geometry of the plane Couette flow is shown inFig.
1a. The steady-state solution is given by

us
x(y) =

(
1 − y

H

)
V, (5)

whereV is the speed of the lower plate (the upper one is
kept fixed) andH is the distance between the two plates.
We assume that att = 0, the velocityux(y, t) is given by the
above profile and that att = 0+ the lower plate stops moving.
To nondimensionalize thex-momentum equation, we scale
the lengths byH, the velocity byV, the stress components
by µV/H , and the time byρH2/µ, whereρ is the constant
density of the fluid. With these scalings, thex-momentum
equation becomes

∂ux

∂t
= ∂τyx

∂y
. (6)

The dimensionless form of the Papanastasiou model is
reduced to

τyx =
{

Bn[1 − exp(−Mγ̇)]

γ̇
+ 1

}
∂ux

∂y
, (7)

whereγ̇ = |∂ux/∂y|,

Bn ≡ τ0H

µV
(8)

is the Bingham number, and

M ≡ mV

H
(9)

is the dimensionless growth parameter.
The dimensionless boundary and initial conditions are as

follows:

ux(0, t) = 0, t > 0, ux(1, t) = 0, t ≥ 0,

ux(y, 0) = 1 − y, 0 ≤ y ≤ 1. (10)

In the case of a Newtonian fluid (Bn = 0), the analytical
solution of the time-dependent flow, governed by Eqs.(6),
(7) and (10), is known[1]:

ux(y, t) = 2

π

∞∑
k=1

1

k
sin (kπy) e−k2π2t . (11)

Hence, the flow ceases theoretically in an infinite amount of
time. If the fluid is a Bingham plastic (Bn > 0), however, the
flow comes to rest in a finite amount of time, as demonstrated
by Huilgol et al.[3], who provide the following upper bound
for the dimensionless stopping time:

Tf ≤ 4

π2 ln

[
1 + π2

2

‖ux(y, 0)‖
Bn

]
, (12)
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