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Abstract

Drop dynamics plays a central role in defining the interfacial morphology in two-phase complex fluids such as emulsions and polymer
blends. In such materials, the components are often microstructured complex fluids themselves. To model and simulate drop behavior in
such systems, one has to deal with the dual complexity of non-Newtonian rheology and evolving interfaces. Recently, we developed a
diffuse-interface formulation which incorporates complex rheology and interfacial dynamics in a unified framework. This paper uses a two-
dimensional implementation of the method to simulate drop coalescence after head-on collision and drop retraction from an elongated initial
shape in a quiescent matrix. One of the two phases is a viscoelastic fluid modeled by an Oldroyd-B equation and the other is Newtonian.
For the parameter values examined here, numerical results show that after drop collision, film drainage is enhanced when either phase is
viscoelastic and drop coalescence happens more readily than in a comparable Newtonian system. The last stage of coalescence is dominated
by a short-range molecular force in the model that is comparable to van der Waals force. The retraction of drops from an initial state of
zero-velocity and zero-stress is hastened at first, but later resisted by viscoelasticity in either component. When retracting from an initial state
with pre-existing stress, produced by cessation of steady shearing, viscoelasticity in the matrix hinders retraction from the beginning while
that in the drop initially enhances retraction but later resists it. These results and the physical mechanisms that they reveal are consistent with
prior experimental observations.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Drop dynamics is the key to understanding interfacial mor-
phology in two-phase materials[1]. In nature and in indus-
trial processes, many such materials have components that
are complex fluids themselves, with internal microstructures
whose evolution affects the macroscopic dynamics of the
material, especially the rheology. Examples include polymer
blends[2], polymer-dispersed liquid crystals[3] and various
biological fluids[4].

Theoretical and numerical analysis of drop dynamics in
complex fluids has to struggle with the dual difficulties of
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moving interfaces and microstructure-dependent rheology.
Specifically, there is the interplay among microscopic, meso-
scopic and macroscopic scales: (a) the internal microstruc-
ture, e.g., molecular conformation, inside each component;
(b) the interfaces and (c) the flow field. The coupling be-
tween (b) and (c) alone is well studied for Newtonian drops
[5]. Similarly, the (a)–(c) coupling is the subject of molecular
constitutive theories in rheology (e.g.,[6]). Having both (a)
and (b) present in a flow problem is the novelty of this work.

Methods for solving moving-interface problems fall into
two broad categories: interface tracking and interface captur-
ing [7,8]. The former uses a moving mesh with grid points
residing on the interface. The latter determines the position
of the interface by using a scalar function, whose evolution
is typically represented by an advection equation on a fixed
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grid. Conceptually, both treat the interface as a zero-thickness
surface, though an essential ingredient in the fixed-grid meth-
ods is a numerical regularization that spreads the interfacial
force over a volume.

Recently, Yue et al.[9] proposed a fixed-griddiffuse-
interface model for two-phase flows of complex fluids. This
model differs from other fixed-grid methods in that the inter-
face is treated asphysically diffuse (e.g.,[10,11]). The inter-
facial position and thickness are determined by a phase-field
variable whose evolution is governed by a mixing energy.
This way, the structure of the interface is rooted in molecular
forces; the tendencies for mixing and demixing are balanced
through the nonlocal mixing energy. This contrasts the level
set and volume-of-fluid methods, which replace the surface
tension by a body force or stress as anumerical device to
regularize the singularity. The significance of this physical
root will become apparent when we discuss the rupture of
the thin film separating two coalescing drops. When the in-
terfacial width approaches zero, the diffuse-interface model
becomes identical to a sharp-interface level-set formulation.
It also reduces properly to the classical sharp-interface model.

In our context of two-phase complex fluids, another attrac-
tion of the diffuse-interface method is its capability of easily
incorporating the rheology of microstructured fluids. This is
by virtue of its energy-based variational formalism. As long
as the conformation of the microstructure is describable by a
free energy, this energy can be added to the mixing energy to
form the total free energy of the multi-phase system. Then a
formal variational procedure applied to the total free energy
will give rise to the proper constitutive equation for the
microstructured fluids in addition to the evolution equation
of the phase field variable. Using the Frank distortion energy
for a liquid crystal, Yue et al.[9] illustrated how interfacial
dynamics and complex rheology can be included in aunified
theoretical framework. Dissipative effects such as viscous
stresses, of course, have to be accounted for separately, e.g.,
via the standard irreversible thermodynamic procedure[12]
or by including Brownian motion in Hamilton’s principle
[13,14].

Yue et al. [9] have implemented the diffuse-interface
method using a spectral representation, and presented
preliminary numerical results to validate the theoretical
model and the numerical method. The goal of this paper is to
apply the method to physically interesting problems where it
generates new insights into the physics. We will investigate
two problems: drop coalescence after head-on collision and
drop retraction from an elongated initial shape. The far-field
matrix fluid remains quiescent in both problems.

2. Theory and numerical method

Yue et al.[9] have given a detailed derivation of the the-
oretical model, discussed its strengths and weaknesses and
its relationship with other fixed-grid methods, and described
the numerical scheme using spectral discretization. In this

section, we will specialize the formalism for a mixture of a
Newtonian and an Oldroyd-B fluid, and summarize the main
features of the numerical procedure.

The Newtonian and Oldroyd-B components are immis-
cible except in a very thin interfacial region. This diffuse
interface has a small but non-zero thickness, inside which
the two components are mixed and store a mixing energy.
An Oldroyd-B fluid consists in a dilute suspension of linear
Hookean dumbbells in a Newtonian solvent[15]. The total
free energy of the mixture thus comprises two parts: mix-
ing energy of the interface and elastic energy for the dumb-
bells.

We introduce a phase-field variableφ such that the con-
centrations of the Oldroyd-B and Newtonian components are
(1 + φ)/2 and (1− φ)/2, respectively. For the mixing energy,
we adopt the familiar Ginzburg-Landau form:

fmix(φ, ∇φ) = 1

2
λ|∇φ|2 + λ

4ε2 (φ2 − 1)2, (1)

whereλ is the mixing energy density with the dimension of
force, andε is a capillary width that scales with the thickness
of the diffuse interface. Asε → 0, the ratioλ/ε produces the
interfacial tension in the classical sense[16,9]. The evolution
of φ is governed by the Cahn-Hilliard equation:

∂φ

∂t
+ v · ∇φ = γλ∇2

[
−∇2φ + φ(φ2 − 1)

ε2

]
, (2)

whereγλ determines the relaxation time of the interfacial
profile [9].

For a single dumbbell with a connectorQ, its elastic en-
ergy is1

2HQ · Q, whereH is the elastic constant. For an en-
semble of dumbbells with configuration distributionΨ (Q),
the average energy can be written as

fd =
∫

R3

(
kT ln Ψ + 1

2
HQ · Q

)
ΨdQ, (3)

wherek is the Boltzmann constant andT is the temperature,
and the integration is over all possible configurations ofQ.
Now the total free energy density of the two-phase system is:

f = fmix + 1 + φ

2
nfd, (4)

wheren is the number density of the dumbbells.
A variational procedure applied to the total free energy

will yield the elastic stress tensor for the system. The stress
tensor due tofmix has been derived by Yue et al.[9], and
here we will only consider the elastic stress due to the dumb-
bell energyfd. We impose a virtual displacementδx on the
material, which takes place instantaneously so that the dumb-
bells deform affinely with no slip between the bead and the
surrounding fluid:

δQ = Q · ∇δx. (5)
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