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Abstract

Methods for the approximation of large-scale dynamical systems will be surveyed. There are mainly two families namely, the SVD-based and

Krylov-based approximation methods. The former family is based on the singular value decomposition and the second onmoment matching.While

the former has many desirable properties including an error bound, it cannot be applied to systems of high complexity. The strength of the latter on

the other hand, is that it can be implemented iteratively and is thus appropriate for application to high complexity systems. An effort to combine the

best attributes of these two families leads to a third class of approximation methods, which will be referred to as SVD/Krylov. Following a survey of

these methods wewill conclude with a new result concerning model reduction with preservation of passivity which is appropriate for application to

large-scale circuits arising in VLSI chip performance verification.
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1. Introduction

Starting point is a dynamical system which has to be

simulated and/or eventually controlled. The first step in this

endeavor consists of modeling, that is deriving equations

describing its behavior. In our setting these will be assumed to

be differential equations, either partial (PDEs) or ordinary

(ODEs). To proceed with their solution, the PDEs are often

discretized in space which leads to a large number of ODEs.

Assume for simplicity that these consist of a set of ncoupled

first order ODEs. Model reduction consists in replacing them

with k coupled first order ODEs where k� n; in addition the

reduced set of ODEs must behave as closely as possible to the

original one. A pictorial representation of how model reduction

fits in the overall picture of simulation/control is shown in

Fig. 1.

For details on the material presented in the sequel we refer to

the book (Antoulas, 2005a).

1.1. Problem statement

We will consider dynamical systems described by (explicit)

state equations

S : ẋ ¼ f ðx; uÞ; y ¼ hðx; uÞ;

with state xð�Þof dimension n, input uð�Þ of dimension m, and

output yð�Þ of dimension p, where n�m; p; we will use the

notation S ¼ ð f ; hÞ. The approximation or model reduction

problem can be formulated as follows.

Problem: Approximate S ¼ ð f ; hÞ with Ŝ ¼ ð f̂; ĥÞ,
uð�Þ 2Rm; x̂ð�Þ 2Rk; ŷð�Þ 2R p, where k� n, so that as many

as possible of the properties below are satisfied:

(1) Approximation error small and existence of an error bound.

(2) Preservation of stability/passivity.

(3) Procedure must be computationally efficient.

1.2. Approximation by projection

The approximation methods to be discussed are obtained by

means of projections. Let V, W 2Rn�k, be such thatW�V ¼ Ik,
where the superscript ð�Þ� denotes transposition. It follows that
P ¼ VW� is a projection. Let x̂ ¼ W�x2Rk; the state x will
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now be approximated by its projection Px ¼ Vx̂. This leads to
the following system which describes the evolution of x̂:

Ŝ : ˙̂x ¼ W� f ðVx̂; uÞ; ŷ ¼ hðVx̂; uÞ:

Thus Ŝ is ‘‘good’’ approximation ofS, if x�Px is ‘‘small’’ in

some appropriate sense.

1.2.1. Special case: linear dynamical systems

In this case f and h are linear, i.e.,

ẋ ¼ Axþ Bu; y ¼ Cxþ Du, and the system will be denoted by

With V, W as above, a k< n dimensional reduced order model

Ŝ: ˙̂x ¼ Âx̂þ B̂u; ŷ ¼ Ĉx̂þ Du, of S is obtained as follows:

The closeness of Ŝ toSwill be measured mostly in terms of the

H1 and the H2 norms. The former is the 2-norm of the worst

output error ky� ŷk2 for inputs kuk2 ¼ 1, while the latter is the

2-norm of the difference between the corresponding impulse

responses kh� ĥk2.

2. Motivating examples

There is a great variety of examples which motivate the need

for model reduction of large-scale systems, both for simulation

and control. A partial list is given in Table 1.

In the sequel we will summarize a few of these applications;

for a complete discussion we refer to the book (Antoulas,

2005a).

2.1. Passive devices: VLSI circuits

Evolution of VLSI design. The integrated circuit (IC) was

invented in the 1960’s. In 1971 the Intel 4004 processor was

introduced. It had 2300 components of size approximately

10mm and an operating frequency of 64 KHz. Thirty years

later, in 2001, the Intel Pentium IV was introduced, having 42

million components with size of the order of 0:18mm and

2 GHz operating frequency; as a result the interconnect

length(length of all interconnections between the components)

is about 2 km, and the chip has seven layers. In this case the

interconnections must be modeled as transmission lines and

simulations are required to verify that internal electromagnetic

fields do not significantly delay or distort circuit signals. This

leads to the need for electromagnetic modeling of interconnects

(and packages). The resulting models are very complex; using

PEEC (Partial Element Equivalent Circuit) methods to

discretize Maxwell’s equations in three-dimensions, we obtain

systems of complexity n� 105 � � � 106; thus model reduction

methods are necessary to verify the performance of the

underlying chip.

For details see e.g. van der Meijs (2000).

2.2. Weather: wave surge forecast

This problem concerns the prediction of wave surge at the

coast of the Netherlands; in cases of high waves certain dams

need to be closed to prevent flooding.

The North Sea is shallow compared, say, to the Atlantic

ocean and therefore wave propagation is governed by the

shallow water equations. A typical discretization results in

about 60,000 ODEs.The computational time (on a laptop) is

about 2 days which is prohibitively long. Therefore the system

needs to be reduced.

Actually, there are eight measurement stations which

provide weather data, and hence the resulting problem is one

of data assimilation. Thus a Kalman Filter is needed, and the

reduced filter propagates low-rank factors of the data

covariance matrix.
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Fig. 1. Model reduction: the big picture.

Table 1

Motivating examples of large-scale systems

1. Passive devices:

VLSI circuits

2. Weather prediction, data assimilation:

North sea forecast

Air quality forecast

America’s cup

3. Biological systems:

Honey comb vibrations

4. Molecular systems:

Dynamics simulations

Heat capacity

5. ISS: International space station:

Stabilization

6. Vibration/acoustic problems:

Windscreen vibrations

7. CVD reactor:

Bifurcations

8. Optimal cooling:

Steel profile

9. MEMS: Micro-electro-mechanical systems :

Elf sensor
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