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a b s t r a c t

This paper studies the angle-of-arrival (AOA) localization problem, namely, localizing networks based on
the angle-of-arrival measurements between certain neighboring network nodes together with the abso-
lute locations of some anchor nodes.We propose the concepts of stiffness matrix and fixability for the an-
chored formation graphsmodeling the networks, and show that they provide a complete characterization
of the AOA localizability as well as an explicit formula for the localization result. Moreover, a distributed
continuous-time algorithm is proposed that converges globally to the correct localization result on fixable
formation graphs. Performances of the proposed algorithm, e.g., convergence rate and robustness to com-
munication delay, are characterized and optimized. Sensitivities of the localization results with respect
to errors in AOA measurements and anchor node positions are also analyzed.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

A multi-agent system consisting of a group of sensors, robots,
vehicles, etc., can collaboratively accomplish tasks that are diffi-
cult or even infeasible for any individual agent. Examples include a
network of sensors monitoring the occurrence of forest wildfires
(Bodrozic, Stipanicev & Stula, 2006), a team of autonomous un-
derwater vehicles mapping seabed terrains (Leonard et al., 2007),
and a group of robots fetching a large object (Mellinger, Shomin,
Michael, & Kumar, 2013). A crucial task in these applications is to
find the (possibly time-varying) locations of all the agents based on
sensormeasurement data available to the agents. A direct localiza-
tionmethod is to use positional devices such as GPS. However, due
to issues such as cost, energy usage, and form factor, such devices
are typically available only at a subset of the agents. To localize
other agents, further inter-agent measurement data is needed. De-
signing algorithms that only utilize local measurements to local-
ize the whole multi-agent network has become a popular research
topic (Patwari et al., 2005).

Based on the type of measurement data available, localiza-
tion algorithms can be classified into two categories: distance-
based schemes anddirection-based schemes. In the distance-based
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schemes, the relative distances between certain neighboring
agents are available for localization purposes. Numerous distance-
based localization algorithms have been proposed in the litera-
ture using, for example, received signal strength (RSS) (Savarese,
Rabaey, & Beutel, 2001), time of arrival (TOA) or time difference
of arrival (TDOA) (Savvides, Han, & Strivastava, 2001), or a com-
bination of RF and ultrasound sensing (Priyantha, Chakraborty,
& Balakrishnan, 2000). A common issue with these algorithms
however is that eliminating ambiguity, especially reflective ambi-
guity, is often very difficult, and may result in large errors (Priyan-
tha, Balakrishnan, Demaine, & Teller, 2003), even after significant
simplifications (Moore, Leonard, Rus, & Teller, 2004). Indeed, the
distance-based localization problem has been shown to be NP-
hard (Dieudonne, Labbani-Igbida, & Petit, 2010; Saxe, 1979), with
a unique solution existing only when the underlying graph is glob-
ally rigid (Eren et al., 2004). From a practical point of view, distance
measurements also requires the (often infeasible) knowledge of
the signal transmission characteristics for RSS-basedmethods, and
sophisticated time synchronization mechanism for TOA/TDOA-
based methods.

In comparison, the direction-based localization schemes use
angle-of-arrival (AOA)measurements instead of relative distances.
Such schemes have not received as much attention mainly due
to two drawbacks. First, the AOA localization problem is also
NP-hard (Bruck, Gao, & Jiang, 2009). However, if compasses are
installed on all the agents to allow for a common global coordinate
for the measured angles, the direction-based localization problem
could be as easy as solving a set of linear equations (Ash & Potter,
2007; Eren,Whiteley, & Belhumeur, 2006). Second,measuring AOA
of RF signals requires advanced hardware such as antenna arrays
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that are usually expensive and large in size due to wavelength
constraints. Nevertheless, in many environmental monitoring
applications, the acoustic sensing devices (Chen, Yao, & Hudson,
2002) that the agents/sensors are equipped with provide an
inexpensive means for acquiring AOA information (Patwari et al.,
2005). As the technologies advance, these drawbacks could be
alleviated to a point where AOA localization schemes become a
viable alternative or at least a valuable supplement to distance-
based schemes.

In this paper, we first formulate the AOA localization prob-
lem within the framework of formation graph theory, which is an
extension of the classical graph theory by incorporating the posi-
tional information of the vertices. It is shown that the AOA local-
ization problem is equivalent to finding the solution to a system
of linear equations (see also Ash & Potter, 2007; Eren et al., 2006).
Instead of a centralized solution that needs the inversion of a large-
scale matrix, we propose a distributed AOA localization algorithm
whose unique globally asymptotically stable equilibrium is the de-
sired localization result. The convergence rate and delay tolerance
of the proposed algorithmare also analyzed andoptimized through
the solution of a condition number optimization problem. The al-
gorithm is then extended to the case of networks with switching
topologies.

Compared to existing approaches (e.g. Ash & Potter, 2007;
Eren et al., 2006) that characterize AOA localizability using rank
conditions on the rigidity matrix, our method utilizes the stiffness
matrix first proposed in Zhu and Hu (2009) and characterizes
AOA localizability using the novel concept of graph fixability. One
advantage of our method is that the stiffness matrix is positive
semidefinite; its eigenvalues provide quantitative measures of
AOA localizability. Another advantage is that, since the stiffness
matrix has a similar structure to that of the celebrated Laplacian
matrix arising in the study of consensus problems (Ren, Beard,
& Atkins, 2005), distributed AOA localization algorithms can be
inspired from consensus algorithms (e.g. Olfati-Saber & Murray,
2004; Ren et al., 2005).

This paper is organized as follows. The concept of formation
graphs and their properties are reviewed in Section 2. In Section 3,
the AOA localization problem is formulated, and AOA localizability
is characterized by the fixability of the underlying formation graph.
In Section 4, we propose a distributed continuous-time AOA local-
ization algorithm, and analyze its performance. A problem of opti-
mizing the algorithm’s performance is also formulated and solved
in Section 4. In Section 5, the proposed algorithm is extended to
networks with switching topologies. Localization errors caused by
inaccurate measurements are analyzed in Section 6. We conclude
this paper and give some prospective questions that deserve fur-
ther research in Section 7. Supplementary proofs are provided in
Appendices.

1.1. Notation

For a symmetric matrix A, we write A ≽ 0 if A is positive
semidefinite. For v = [a b]⊤ ∈ R2, ̸ vdenotes the principal value of
argumentwithin the range [0, 2π) of the complex number a+bi ∈
C; and v⊥ = [−b a]⊤ ∈ R2 denotes the 90° counterclockwise ro-
tation of v. Let Q : R2

→ R2 be the operator such that Q : v → v⊥
and Q−1 : v → −v⊥. If p is a stacked vector with pi ∈ R2 as
its components, then we use p⊥ to denote the vector with com-
ponents p⊥i . Denote by SOn ,


T ∈ Rn×n

: T⊤T = In, det(T ) = 1


the set of all n-dimensional special orthogonal matrices.

2. Formation graphs and rigidity

In this section, the concepts of (anchored) formation graphs
and some of their properties will be reviewed. These provide the

theoretical framework for studying the localization problem in
Section 3.

Definition 1 (Formation Graph). A formation graph is a triple
(V, p, K) consisting of the following.

• V = {1, 2, . . . , n} is the index set of n vertices (agents, sensor
nodes, etc.) on the plane.
• p =


p⊤1 p⊤2 · · · p⊤n

⊤
∈ R2n is the (position) configura-

tion of the n vertices, where pi ∈ R2 denotes the position of
vertex i. We assume that pi ≠ pj for i ≠ j.
• K =


kij

i,j∈V ∈ Rn×n is the connectivity matrix, where kij is the

connectivity coefficient between vertices i, j ∈ V , and it satisfies
kii = 0, kij ≥ 0, and kij = kji.

Definition 2 (Anchored Formation Graph). A formation graph
(V, p, K) together with a nonempty anchor set A ⊂ V is called an
anchored formation graph, and is denoted by (V, p, K , A). Vertices
in A and F , V \ A are called anchors and free vertices, respec-
tively.

In the applications of network localization and formation
control, anchors usually refer to those nodes that know their
absolute locations via, for example, positioning devices.

Definition 3 (Consistency). Two formation graphs (V, p, K) and
(V, p′, K) with the same vertex set and connectivity matrix are
called consistent if ∥pi − pj∥ = ∥p′i − p′j∥ for all those i, j ∈ V
with kij > 0.

Likewise, two anchored formation graphs (V, p, K , A) and
(V, p′, K , A′) are consistent if (i) (V, p, K) and (V, p′, K) are
consistent; (ii) A = A′; and (iii) pi = p′i for all i ∈ A.

Two vertices i, j ∈ V are called connected if their connectiv-
ity coefficient kij > 0. Consistent formation graphs have the same
relative distances between connected vertices. For anchored for-
mations, consistency requires in addition the same set of anchors
and anchor positions.

If two formation graphs have the same relative distances be-
tween all pairs of vertices, not just connected ones, then there
exists a congruent transformation composed of rotations, transla-
tions, and reflections that transforms the vertex positions of one to
the other; thus we have the following definition.

Definition 4 (Congruency). Two formation graphs (V, p, K) and
(V, p′, K) are congruent if ∥pi − pj∥ = ∥p′i − p′j∥ for all i, j ∈ V .
Two anchored formation graphs (V, p, K , A) and (V, p′, K , A′)
are congruent if (V, p, K) is congruent to (V, p′, K), A = A′ and
pi = p′i for all i ∈ A.

Obviously, congruent formation graphs are consistent. The
reverse, however, does not hold in general, except for formation
graphs possessing the following property.

Definition 5 (Global Rigidity (Eren et al., 2004)). A formation graph
(V, p, K) is called globally rigid if any formation graph (V, p′, K)
consistent with it must also be congruent to it.

In essence, global rigidity characterizes the inflexibility of the
shape of the formation, given that the relative distances between
connected vertex pairs are kept constant. In the distance-based
localization problem, exact localization is possible only for globally
rigid formation graphs (Eren et al., 2004).

Determining global rigidity is, however, in general difficult. An
easier alternative is its infinitesimal version. For a given formation
graph (V, p, K), the distance constraints between connected
vertices can be equivalently summarized as kij∥pj − pi∥

2
≡ kijd2ij
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