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a b s t r a c t

In this paper we present an efficient approach to the analysis of discrete positive singular systems. One of
our main objectives is to investigate the problem of characterizing positivity of such systems. Previously,
this issue was not completely addressed.We provide easily checkable necessary and sufficient conditions
for such problem to be solved. On the other hand, we study the stability of discrete positive singular
systems. Note that this is not a trivial problem since the set of admissible initial conditions is not thewhole
space but it is represented by a special cone. All the conditions we provide are necessary and sufficient
and are based on a reliable computational approach via linear programming.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past few years, singular systems (also referred to as
descriptor systems, semi-state systems, implicit systems, differen-
tial–algebraic systems, or generalized state-space systems) have
constantly gained a great interest. This kind of systems naturally
appears in many practical areas such as robotics, compartmental
systems, circuit systems, Leontief dynamic models, etc.; see Jódar
and Merello (2010), Kunkel and Mehrmann (2006), Riaza (2008)
and Silva and de Lima (2003). Their solutions and fundamental
properties such as stability and controllability have been fully stud-
ied. Important developments took place in the 1980s; see for in-
stance the survey paper (Campbell, 1980; Dai, 1989; Lewis, 1986).
In the last three decades, some interesting monographs entirely
devoted tomany topics of this type of systems have been presented
(Campbell, 1980; Dai, 1989; Duan, 2010; Kunkel & Mehrmann,
2006; Lam & Xu, 2006; Riaza, 2008; Virnik, 2008a) along with a
vast amount of contributions extending the framework of standard
systems to deal with stabilization and robustness. These intensive
developments are a testimony of the vitality and the maturity of
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this field that remains an area of active research; see for instance
recentworks among others (Bara, 2011; Ferranti, De Zutter, Knock-
aert, & Dhaene, 2011; Shi & Yan, 2011; Steinbrecher, Stykel, Hinze,
& Kunkel, 2012).

In this paper, our focus is on discrete singular systems under
positivity constraint on their states. This is inherent to many real-
world systems for which the states are intrinsically nonnegative
since they can represent real physical quantities such as concen-
trations, level and volume of matter transfer, size of populations,
etc. Singular systemswhich have nonnegative states whenever the
initial conditions are nonnegative are referred to as positive sys-
tems (Farina & Rinaldi, 2000; Kaczorek, 2005; Luenberger, 1979) or
evenly as nonnegative systems (Chellaboina, Haddad, & Hui, 2010).

Althoughmany fundamental issues havebeenwell-investigated
for standard singular systems and, in particular, for standard pos-
itive systems, they have not been sufficiently investigated for the
specific class of positive singular systems. To the best of our knowl-
edge fewworks on such systems can be found in the literature (Bru,
Coll, Romero-Vivo, & Sánchez, 2003; Bru, Coll, & Sánchez, 2002;
Cantó, Coll, & Sánchez, 2008; Herrero, Ramírez, & Thome, 2007,
2010; Reis & Virnik, 2009; Virnik, 2008b). These works are based
on a common standing, but unnecessary, assumption for positivity
of a singular system. That is, the matrix that represents the projec-
tor on the set of admissible initial conditions is nonnegative. Most
of the reported results have focused on other fundamental proper-
ties such as reachability and controllability. The stability issue was
considered only in Ait Rami and Napp (2012) and Virnik (2008b).
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In this paper, unlike the previous reported results on discrete pos-
itive singular systems, positivity is fully investigated without any
unnecessary assumption. Note that, in general, numerically check-
ing positive invariance for a particular set of initial conditions even
for a standard linear system can be quite complicated. This fact also
applies to the stability analysis for a given set of initial conditions.
This issue has been investigated in Nieuwenhuis (1984) and Stern
(1982) for LTI systemswith respect to a closed convex pointed cone
for which necessary and sufficient conditions for positive invari-
ance and stability have been provided. However, the proposed re-
sults are rather theoretical and cannot be checked numerically. In
the case of positive singular systemswe have to dealwith a specific
conic set of the form im(P)∩Rn

+
, where thematrix P represents the

projector on the admissible set of initial conditions. For such a set
the stability issue is also addressed. The proposed approach is nu-
merically appealing for checking positivity and stability of a given
discrete singular system. All the proposed conditions are necessary
and sufficient and can be checked by using linear programming
(LP).

The structure of the paper is as follows. Section 2 gives the
necessary background on singular systems. Section 3 is concerned
with the positivity of discrete singular systems for which some
characterizations are provided together with an illustrative exam-
ple. Section 4 deals with the stability issue. In Section 5 the notion
of internal positivity is investigated. Section 6 gives some conclu-
sions.

Notation:Rn
+
denotes thenonnegative orthant of then-dimensional

real space Rn and Ṙn
+
its interior. A real matrix (or a vector) M =

[M(i, j)] is called nonnegative, denoted by M ≥ 0, if all its com-
ponents are nonnegative (i.e., M(i, j) ≥ 0); analogously, a positive
matrix or vector is denoted byM > 0 if its components are strictly
positive. M+ is used to denote the Moore–Penrose pseudoinverse
of the matrixM and σ(M) its spectrum.

2. Solvability

This section provides preliminary results regarding the exis-
tence and characterization of the solution of the following time-
invariant homogeneous singular system:

Ex(k + 1) = Ax(k) (1)

where E, A ∈ Rn×n. In contrast to standard linear systems for
which E is invertible, system (1) may not possess a solution for
arbitrary initial conditions.

Definition 2.1. The set of initial conditions for which system (1)
has a solution is called the set of admissible initial conditions.

The characterization of the admissible set of initial condi-
tions with their associated trajectories involves the Drazin inverse.
Hence, we first present some basic properties of this kind of in-
verse (see Campbell &Meyer, 1991, Drazin, 1958 for more details).
For any matrix M ∈ Rn×n there always exists a unique matrix
MD, which is called the Drazin inverse of M , such that MDM =

MMD,MDMMD
= MD andMDMν+1

= Mν , where ν is the smallest
nonnegative integer such that rank(Mν) = rank(Mν+1). In Kunkel
and Mehrmann (2006), it is shown how the Drazin inverse can be
computed; see also Cantó, Coll, and Sánchez (2005), Yimin (1996)
and Zhang (2001) for more details on this issue. One way to com-
pute it is as follows: by using the Jordan canonical form, anymatrix
M can be decomposed as

M = T

C 0
0 N


T−1, (2)

where C is invertible and N is a nilpotent matrix. Then, its Drazin
inverse is given by

MD
= T


C−1 0
0 0


T−1. (3)

The following result presents a characterization for the solvabil-
ity of system (1). In Campbell (1980), a precise explicit solution to
system (1) has been given (see also Kunkel & Mehrmann, 2006).

Theorem 2.2 (Campbell, 1980). The singular system (1) admits a
unique solution for each admissible initial condition if and only if
(E, A) is regular (i.e., there exists a λ ∈ C such that (λE − A)−1

exists). Moreover, the set of admissible initial conditions is given by
X0 := im(EDE) and the solutions of (1) have the following form:

x(k) = (EDA)kEDEv, (4)

where v is an arbitrary vector in Rn, the matricesA andE are given byE = (λE − A)−1E, A = (λE − A)−1A, (5)

with λ any complex number such that (λE−A)−1 exists, andED is the
Drazin inverse of E.
Remark 2.3. Theorem 2.2 summarizes the results of Theorems
3.6.1 and 3.6.2 in Campbell (1980). Based on this theorem, one can
see that the trajectory (4) is the solution to the difference equation
x(k + 1) = EDAx(k) with x(0) = EDEv ∈ im(EDE). Note that the
solution (4) does not depend on the value of λ used to defineE andA. Formore details see Campbell (1980) andKunkel andMehrmann
(2006).

According to Theorem 2.2we assume throughout the rest of the
paper that (E, A) is regular.

In the sequel, we shall make use of some useful properties
of the matrices P := EDE and A = EDA that characterize the
admissible set of initial conditions. Such properties are presented
in the following result.

Lemma 2.4 (Ait Rami & Napp, 2012, Lemma 3.2). The following
properties hold true.

(i) P is idempotent or a projector (i.e., P2
= P).

(ii) PA = AP = A.
(iii) For any solution x(k) to system (1) we have

Px(k) = x(k).

3. Positivity

This section deals with the characterization of positivity of sys-
tem (1). Although the positivity analysis is simple when the set of
admissible initial conditions is the positive orthant, the characteri-
zation of positivity for an arbitrary set of initial conditions is not, in
general, an easy task. The positive invariance for LTI systems with
respect to a given cone has been studied in Nieuwenhuis (1984)
and Stern (1982). However, the reported results are rather theoret-
ical and cannot be checked numerically. In what follows, we shall
investigate computationally sound conditions for the positivity of
system (1) in connectionwith the conic set of the form im(P)∩Rn

+
.

Observe that when the matrix E is nonsingular, system (1) reduces
to the standard linear system x(k + 1) = E−1Ax(k). Obviously, in
this case system (1) is positive if and only if E−1A is a nonnegative
matrix (i.e., E−1A ≥ 0).

Definition 3.1. We say that system (1) is positive if for any non-
negative admissible initial condition x(0) ∈ X0 = im(P) ∩ Rn

+
we

have that x(k) ≥ 0 for all k ≥ 0.
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