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a b s t r a c t

In this paper, we consider the variable selection problem for a nonlinear non-parametric system. Two
approaches are proposed, one top-down approach and one bottom-up approach. The top-down algorithm
selects a variable by detecting if the corresponding partial derivative is zero or not at the point of
interest. The algorithm is shown to have not only the parameter but also the set convergence. This is
critical because the variable selection problem is binary, a variable is either selected or not selected. The
bottom-up approach is based on the forward/backward stepwise selection which is designed to work if
the data length is limited. Both approaches determine the most important variables locally and allow
the unknown non-parametric nonlinear system to have different local dimensions at different points of
interest. Further, two potential applications along with numerical simulations are provided to illustrate
the usefulness of the proposed algorithms.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

This paper concerns identification of a scalar discrete nonlinear
non-parametric system
y(k) = f (x(k)) + v(k) = f (x1(k), x2(k), . . . , xp(k)) + v(k),

k = 1, 2, . . . ,N (1.1)
where y(·) is the system output and v(·) is an iid noise se-
quence of zero mean and finite variance. The regressor x(k) =

(x1(k), . . . , xp(k)) consists of possible contributing variables. The
structure of the nonlinear function f is unknown. The system (1.1)
represents a large class of nonlinear systems including the finite
impulse response nonlinear system by letting x(k) = (u(k −

1), . . . , u(k−p)). The well known nonlinear auto-regressive mov-
ing average systemwith exogenous inputs (NARX) (Mao & Billings,
2006; Sjoberg et al., 1995) is also a special case of (1.1)
y(k) = f (y(k − 1), . . . , y(k − m),

u(k − 1), . . . , u(k − m)) + v(k) (1.2)
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for x(k) = (y(k − 1), . . . , y(k − m), u(k − 1), . . . , u(k − m)) and
p = 2m, where u(k)’s are the inputs to the system.

The purpose of nonlinear non-parametric system identification
is to estimate the unknown function f (·) based on the available
data {y(k), x(k)}Nk=1. Obviously, one of the difficulties in non-
parametric system identification is that the structure of f is
unknown. One approach towards this problem is to approximate
the unknown system by a possibly nonlinear basis function φi(x)’s
but linear in the unknown parameters f (x) =


αiφi(x). This

approach includes polynomial representation as in Volterra series,
splines approximation, linearization of f and others. An advantage
of this approach is that it converts approximately a non-parametric
problem into a linear in parameters problem. A disadvantage is
that much information of the unknown f must be available a
priori or the number of terms in the representation to reasonably
approximate the unknown f could be extremely highwhichmakes
identification very sensitive to noise and uncertainty in f .

The other approach is to estimate the value of f (·) point by
point, say f (x0) is of interest, the value of f (x0) is estimated based
on the available data, often referred to as Model on Demand.
Almost all the methods in this class are in some form of weighted
local averages. The celebrated kernel and local polynomial
estimators (Bai, 2010; Fan & Gijbels, 1996) as well as the direct
weight optimization (Bai & Liu, 2007; Roll, Nazin, & Ljung, 2005)
and the stochastic approximation all belong to this class. A problem
with any local average approachwith a high dimensional regressor
x(k) = (x1(k), . . . , xp(k)) ∈ Rp is the curse of dimensionality.
To illustrate, consider a simple example of an FIR system with
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x(k) = (u(k−1), . . . , u(k−p)). Let the inputu(·)be iid anduniform
in [−1, 1]. Suppose the value f (x0) with x0 = (0, 0, . . . , 0) is of
interest. Then, there must be adequate measurements x(k)’s in the
neighborhood of x0 = (0, 0, . . . , 0) to reliably estimate f (x0) due
to noise and uncertainty. For simplicity, suppose the neighborhood
of x0 = (0, 0, . . . , 0) is a ball of radius 0.1 centered at the origin.
Thus the probability that x(k) for each k is inside the neighborhood
of x0 = (0, 0, . . . , 0) is πp/20.1p

Γ (p/2+1)
1
2p whereΓ is the Gamma function.

In particular, Γ (p/2+ 1) = p/2! for an even integer p. Suppose 10
points in the neighborhood are adequate. Then on average for a
large N to have 10 or more points in the neighborhood, the total
data length N has to satisfy N πp/20.1p

Γ (p/2+1)
1
2p ≥ 10 or

N ≥ 10 · (20)p · (p/2)!/(πp/2) =


1.24 · 108, p = 6
4.02 · 1013, p = 10.

This implies that in a practical situation, the required data length
N is gigantic even for a modest p. The curse of dimensionality is
a fundamental problem for all local average approaches in many
fields, not limited to system identification.

Fortunately, for a number of practical applications, systems are
sparse in the sense that not all xi(k)’s, i = 1, 2, . . . , p contribute
to the output y(k) or contribute little. If these variables xi(k)’s that
do not contribute can be identified and removed, the dimension
could be smaller. This is referred to as the variable selection prob-
lem in the literature. The variable selection problem has been ex-
tensively investigated in the literature in a linear setting includ-
ing MDS (Cox & Cox, 2000), LASSO, LARS and their variants (Zou,
2006). More recently, compressive sensing techniques are also de-
veloped for this purpose. In addition, there exists a large literature
inmachine learning to dealwith the dimension reduction problem,
e.g., PCA (Jolliffe, 2002), LLE (Roweis & Saul, 2000), tree structured
algorithms and others. Most works in the machine learning litera-
ture however project data to a lower dimensional space based on
some features ignoring the output variable y, e.g., by nonlinear PCA
and LLE. Thus thesemethods are not ideal for system identification
of the system (1.1) where the output error is one of the major con-
cerns. Even algorithms that take output error into consideration,
e.g., the partial least squares (Rosipal & Kramer, 2006) developed in
a linear setting do not seem to work in a nonlinear non-parametric
setting. It should be emphasized that besides obvious nonlinear-
ity, there are some fundamental differences in variable selection
between a linear setting and a nonlinear setting. In a linear setting,
a variable contributes or not is a global conceptwhile in a nonlinear
setting, it can be a local concept. For instance, consider a nonlinear
system,

y(k) = f (u(k − 1), u(k − 2), u(k − 3), u(k − 4))

=


u(k − 4) u(k − 1) ≥ 0
u(k − 4)u(k − 2) u(k − 4) < 0, u(k − 2) ≥ 0
u(k − 4)u(k − 3) u(k − 4) < 0, u(k − 2) < 0
u(k − 1) otherwise.

(1.3)

All 4 variables u(k− 1), u(k− 2), u(k− 3), u(k− 4) contribute. In
other words, f (·) is not sparse globally but sparse locally and the
sparsity varies from one location to another. Clearly, in general, al-
gorithms developed for variable selection in a linear setting do not
directly apply to a nonlinear setting. In fact, variable selection in
a nonlinear non-parametric setting in a system identification con-
tent has received only scattered attention in the identification lit-
erature. Sjoberg et al. (1995) provides an excellent survey. Many
variable selection methods proposed represent the nonlinear sys-
tem in a linear-in-parameters setting so that the methods devel-
oped for linear systems can be readily applied but approximately.

The variable selection problem actually consists of two parts,
determining the number of variables that contribute to the output

y(k) and once the number is determined, finding the contributing
variables among x1, . . . , xp. The variable selection problem is
closely related to the problem of the order determination. For
instance, in a setting of the NARX system (1.2), it is to find the
minimum m in (1.2) so that for all i > m, u(k − i) and y(k − i)
do not contribute. Obviously, in this setting, oncem is determined,
the contributing variables are y(k − 1), . . . , y(k − m), u(k −

1), . . . , u(k − m). To determine the order m, several ways have
been reported. One is based on hypothesis tests (Hong et al., 2008;
Peduzzi, 1980). A null hypothesis is specified by assuming the
minimum m. Then, the hypothesis is tested. A difficulty of this
approach is that the statistics depend on the unknown f . Since f
is unknown, some assumptions have to be made. Another form
of hypothesis tests are ANOVA which seem to work well under
the Gaussian assumption (Bai & Chan, 2008; Lind & Ljung, 2008).
The order determination for a nonlinear non-parametric system
is investigated in Pillonetto, Quang, and Chiuso (2011) and Su
and Yang (2002) by semi-parametric approaches. In Su and Yang
(2002), the unknown nonlinear system is modeled by a neural
fuzzy network. If the prescribed neural fuzzy network is rich
enough and contains the true but unknown nonlinear system, the
approach is expected to work if the data length N is large. How
to assign a neural fuzzy network without knowing the system
is not a trivial question. In Pillonetto et al. (2011), the unknown
system is cleverly modeled as a Gaussian random process and
thus the unknown quantities are the covariance and the hyper-
parameters that specify the covariance. A key part is the choice
of the covariance that is usually based on prior information of
the unknown system. A right or a poor choice of the covariance
critically affects the performance. The proposed approaches in
this paper try to minimize the use of a prior information on the
unknown system and in fact only smoothness is assumed.

The other interesting methods in determining the order m
include the Lipschitz numbers (He &Asada, 2003), the false nearest
neighbor approach (Bomerger & Seborg, 1998; He & Asada, 2003)
and their variants (Cao, 1997; Kennel, Brown, & Abarbanel, 1992).
The idea is simple and elegant. For a given x(k) = (y(k −

1), . . . , y(k − m), u(k − 1), . . . , u(k − m)), the nearest neighbor
x(j) = (y(j − 1), . . . , y(j − m), u(j − 1), . . . , u(j − m)) satisfies

∥x(k) − x(j)∥ ≤ ∥x(k) − x(i)∥, ∀i ≠ k.

Then determine if

|y(k) − y(j)|
∥x(k) − x(j)∥

≤ R (1.4)

for some threshold R. If the above inequality holds then the
neighbor x(j) is a true neighbor of x(k). Otherwise, the neighbor
is a false one. Continue the process for all k = 1, 2, . . . ,N and
calculate the percentage of false nearest neighbors. The minimum
m that has zero or a small percentage of the false nearest neighbors
is considered to be the right dimension n of the system. Note that
the idea is global since the dimensionm is tested globally.

The variable selection problem is different from the order
determination and actually goes further. Even in the setting of
the NARX system (1.2) with a known dimension m, the variable
selection determines if y(k − i) and u(k − j) i, j ≤ m contribute
to y(k) or not. If not, these variables could be removed from
f (·). Recall in the order determination, once m is determined, all
variables y(k−i), u(k−i)’s, i ≤ m, are considered to be contributing
variables.

The current paper discusses the variable selection problem.
Given a point of interest, the goal is to determine the number n
of variables that contribute locally and once n is determined, then
to find those n variables. In this paper, we study the variable se-
lection problem in two directions. First, given a point of interest
x0 = (x01, x

0
2, . . . , x

0
p), the importance of xi(k) in the neighborhood
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