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a b s t r a c t

This paper presents a novel optimal control problem, referred to as distributed optimal control, that
is applicable to multiscale dynamical systems comprised of numerous interacting agents. The system
performance is represented by an integral cost function of themacroscopic state that is optimized subject
to a hyperbolic partial differential equation known as the advection equation. The microscopic control
laws are derived from the optimal macroscopic description using a potential function approach. The
optimality conditions of the distributed optimal control problem are first derived analytically and, then,
demonstrated numerically through a multi-agent trajectory optimization problem.

© 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Many complex systems ranging from renewable resources
(Sanchirico & Wilen, 2005) to very large scale robotic (VLSR) sys-
tems (Reif & Wang, 1999) can be described as multiscale dy-
namical systems comprised of many interactive agents. On small
spatial and temporal scales, the dynamics of every agent can be de-
scribed by a small systemof ordinary differential equations (ODEs),
referred to as the microscopic or detailed equation. On larger spa-
tial and temporal scales, the agents’ dynamics and interactions give
rise to macroscopic coherent behaviors, or coarse dynamics, that
can bemodeled by partial differential equations (PDEs) (Kevrekidis
et al., 2003). In many cases, the macroscopic PDE model can be
derived by mapping the microscopic states of the agents to a
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macroscopic description using an appropriate restriction opera-
tor, such as the distribution of the agents or its lower-order mo-
ments (Kevrekidis et al., 2003).

This paper presents a distributed optimal control (DOC) prob-
lem formulation and optimality conditions applicable to a class of
multiscale dynamical systems in which the restriction operator is
the distribution of the agents, and the macroscopic dynamics are
given by a PDE known as the advection equation. The DOC ap-
proach is demonstrated by solving a trajectory optimization prob-
lem in which a large number of unicycle robots must travel from
an initial to a final macroscopic state, in the presence of obsta-
cles. It was recently shown that optimizing the trajectories of N
agents in an obstacle-populated environment is polynomial-space-
hard (PSPACE-hard) in N (Hopcroft, Schwartz, & Sharir, 1984). A
problem is considered PSPACE-hard if every problem in its class
is at least as difficult as any problem solvable in polynomial space
(PSPACE). The class of PSPACE problems contains many problems
for which no efficient solutions are known. Therefore, a PSPACE-
hard problem is generally considered to be computationally in-
tractable for large N , as it would require exponential deterministic
time in the worse case (Rich, 2008).

Several approaches have been proposed for tackling the control
of VLRS systems, and avoid complexity issues for large N (Cheah,
Hou, & Slotine, 2009). These approaches include prioritized
planning techniques (Thrun, Bennewitz, & Burgard, 2002), and
path-coordination methods (LaValle & Hutchinson, 1998), which
first plan the agents’ trajectories independently, and then adjust
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the microscopic control laws to avoid mutual collisions. Behavior-
based control methods seek feasible solutions by programming
a set of simple behaviors for each agent, and by showing that
the agents’ interactions give rise to a macroscopic behavior, such
as dispersion (Reif & Wang, 1999). Swarm-intelligence methods,
such as foraging and schooling (Gazi & Passino, 2004), view each
agent as an interchangeable unit subject to local objectives and
constraints through which the swarm can converge to a range of
pre-defined distributions.

The DOC approach presented in this paper does not rely on
decoupling the agents’ dynamics, or on specifying the agents’
distribution a priori. Instead, DOC optimizes the macroscopic
performance of the system subject to agent dynamics that are
coupled via the objective function, and relies on the macroscopic
evolution equation and restriction operator that characterize the
multiscale system to reduce the computational complexity of the
optimal control problem. As a result the computation required is
significantly reduced compared to classical optimal control, and
the trajectories of cooperative agents can be computed over large
spatial and time scales without sacrificing optimality or complete-
ness. The DOC optimality conditions are derived using calculus of
variations, and validated using numerical solutions obtained via a
direct optimizationmethod. Simulations are presented to illustrate
the performance of the DOC approach on a trajectory optimization
problem involving hundreds of agents, and multiple cooperative
objectives.

2. Problem formulation and assumptions

This paper considers the problem of computing the optimal
state and control trajectories for a multiscale dynamical system
comprised of N dynamical systems, referred to as agents, that can
each be described by a small system of ODEs, referred to as the
detailed equation,

ẋi(t) = f[xi(t),ui(t), t], xi(T0) = xi0 , i = 1, . . . ,N (1)

where xi ∈ X ⊂ Rn and ui ∈ U ⊂ Rm denote the microscopic
state and control of the ith agent, respectively, xi0 is the initial value
of the microscopic state, X denotes the microscopic state space,
and U denotes the space of admissible microscopic controls. On
larger spatial and temporal scales, the interactions of the N agents
give rise to macroscopic coherent behaviors, or coarse dynamics,
that are modeled by PDEs. The macroscopic state of the multiscale
system, denoted by X ∈ Rl, consists of l < n variables that cap-
ture the macroscopic system dynamics and performance, such as
lower-order moments of the microscopically-evolving agent dis-
tribution (Kevrekidis et al., 2003).

From the agent distribution, it is possible to determine a re-
striction operator ℘xi that maps the microscopic states to the
macroscopic description (Kevrekidis et al., 2003). Since xi is a time-
varying continuous vector,℘xi is a time-varyingprobability density
function (PDF),℘xi : X×R → R, such that X = ℘xi(xi, t), and l =
1. Then, for any agent i, the probability of event xi ∈ B at time t is,

P(xi ∈ B, t) =


B
℘xi(xi, t)dxi, (2)

for any subset B ⊂ X, where ℘xi is a nonnegative function that
satisfies the normalization property,

X

℘xi(xi, t)dxi = 1 (3)

and is abbreviated to ℘ in the remainder of this paper. For exam-
ple, if xi is the position of agent i at time t , the agent can be viewed
as a fluid particle in the Lagrangian approach, and ℘(xi, t) can be
viewed as the forward PDF of particle position (Pope, 2000). Fur-
thermore, N℘(xi, t) represents the density of agents in X.

The macroscopic system performance is a function of the agent
distribution and control, and it can be expressed as an integral cost
function of ℘ and ui,

J = φ[℘(xi, Tf )] +

 Tf

T0


X

L [℘(xi, t),ui(t), t]dxidt (4)

where L is the Lagrangian, and φ is the terminal cost. DOC seeks
to determine themacroscopic state andmicroscopic control trajec-
tories that minimize J over a (large) time interval (T0, Tf ], subject
to the coarse dynamics, the normalization condition (3), and state
constraints.

Through state constraints, it is possible to guarantee that, at any
time t ∈ (T0, Tf ], xi ∈ X for all i, and, thus, agents in X are never
created nor destroyed. The PDE that governs the motion of a con-
served, scalar quantity, such as a PDF, as it is advected by a known
velocity field is a hyperbolic PDE known as the advection equation
(Boyd, 2001). Based on the advection equation, when℘ is advected
by the velocity field vi = ẋi ∈ Rn, known from the detailed Eq. (1),
the evolution of℘ can be derived from the continuity equation and
Gauss’ theorem. It can be shown that the time-rate of change of ℘
can be written in terms of the divergence of the vector (℘vi), as
shown by the advection equation,

∂℘

∂t
= −∇ · {℘(xi, t) vi(t)} (5)

= −∇ · {℘(xi, t) f[xi,ui, t]} (6)

where, the gradient ∇ denotes a row vector of partial derivatives
with respect to the elements of xi, (·) denotes the dot product, and
the divergence is written as the dot product between (℘vi) and
the gradient ∇ . The reader is referred to Boyd (2001) for a detailed
derivation of the advection equation. Assuming the initial agent
distribution is a known PDF g0, the macroscopic evolution equa-
tion (6) is subject to the following initial and boundary conditions,

℘(xi, T0) = g0(xi), ∀xi ∈ X (7)

℘(xi, t) = 0, ∀xi ∈ ∂X, ∀t ∈ (T0, Tf ] (8)

where ∂X denotes the boundary of X, such that agents remain in
the interior of X at all times. Additionally, ℘ must obey the nor-
malization condition (3), and the state constraint

℘(xi, t) = 0, ∀xi ∉ X, ∀t ∈ (T0, Tf ]. (9)

Then, the DOC problem consists of finding the optimal agent distri-
bution,℘∗, andmicroscopic controls, u∗

i , thatminimize themacro-
scopic cost function (4) subject to the dynamic constraint (6), the
normalization condition (3), the initial and boundary conditions
(7)–(8), and the state constraint (9). Since the DOC problem does
not obey the classical optimal control formulation (Stengel, 1986),
new optimality conditions are derived in the next section, and then
they are validated numerically in Section 5 through a multi-agent
trajectory optimization problem presented in Section 4.

3. DOC optimality conditions

The necessary conditions for optimality are derived by using
calculus of variations to determine the agent distribution and
control laws that minimize the integral cost function (4). Since
the optimization of (4) is subject to a set of dynamic and equality
constraints, the integral to be minimized is found by adjoining the
dynamic constraints to (4) using a Lagrangemultiplier (Fox, 1987).
By this approach, necessary conditions for optimality are found
from the first-order effects of control variations that must be zero
at all times for the integral cost to be stationary. Then, higher-
order sensitivity to control variations can be tested to discriminate
between cases in which the integral is a minimum, a maximum, or
is neither (Fox, 1987).
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