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a b s t r a c t

An efficient optimization procedure is proposed for computing a receding horizon control law for linear
systems with linearly constrained control inputs and additive disturbances. The procedure uses an active
set approach to solve the dynamic programmingproblemassociatedwith themin–maxoptimization of an
H∞ performance index. The active constraint set is determined at each sampling instant using first-order
necessary conditions for optimality. The computational complexity of each iteration of the algorithm
depends linearly on the prediction horizon length. We discuss convergence, closed loop stability and
bounds on the disturbance l2-gain in closed loop operation.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The aim of robust control is to provide guarantees of stability
and of performance with respect to a suitable measure, despite
uncertainty in the model of the controlled system. Model Predic-
tive Control (MPC) uses a receding horizon strategy to derive ro-
bust control laws by repeatedly solving a constrained optimization
problem online, and consequently the approach is effective for sys-
tems with constraints and bounded disturbances.

Robust receding horizon control based on a worst-case opti-
mizationwas proposed inWitsenhausen (1968). The approach em-
ployed amin–max optimization, which was subsequently adopted
in Campo and Morari (1987) to derive an MPC law for linear sys-
tems with uncertain impulse response coefficients. In this strat-
egy, and in the related work (Allwright & Papavasiliou, 1992), an
open loop predicted future input sequence was used to minimize
the worst-case predicted performance. It was argued in Lee and
Yu (1997) that by optimizing instead over closed loop predicted
input sequences, control laws with improved performance and
larger regions of attraction could be obtained. However, unless a
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degree of optimality is sacrificed through the use of suboptimal
controller parameterizations (such as, for example, those proposed
in Goulart, Kerrigan, and Maciejowski (2006), Kothare, Balakrish-
nan, andMorari (1996) and Löfberg (2003)), strategies that involve
a receding horizon optimization over predicted feedback policies
generally require impractically large computational loads. For ex-
ample Kerrigan and Maciejowski (2003) and Scokaert and Mayne
(1998) apply a scenario-based approach to constrained linear
systems with bounded additive uncertainty, which leads to an op-
timization problem in a number of variables which grows expo-
nentially with the prediction horizon length.

Parametric solution methods aim to avoid the explosion in
computational complexity of robust dynamic programming with
horizon length by characterizing the solution of the receding
horizon optimization problem offline, typically as a feedback law
that is a piecewise affine function of themodel state. In (Bemporad,
Borrelli, & Morari, 2003; Diehl & Björnberg, 2004) this methodwas
applied to linear systems with polytopic parametric uncertainty.
However, whereas MPC typically solves an optimization problem
for a single initial condition at each instant, this approach requires
the solution at all points in state space, and moreover necessitates
determining online which of a large number of polytopic regions
contains the current state.

This paper extends themethodology developed in Cannon, Liao,
and Kouvaritakis (2008), Ferreau, Bock, and Diehl (2008) and Best
(1996) to the case of linear systems with bounded additive uncer-
tainty and input constraints in order to derive a robust dynamic
programming solver. An online active set method is described
which avoids the need to compute the solution over the entire
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state space, and which forms the basis of an efficient line-search-
based point location technique. The control law is optimal for a
convex–concave min–max H∞ performance index, which ensures
closed loop stability and a specified l2-disturbance gain bound. The
algorithm’s computational complexity per iteration grows only lin-
early with horizon length. We consider the case, which was pre-
sented in Buerger, Cannon, and Kouvaritakis (2011), of systems
subject to constraints on control inputs alone; this paper provides
further theoretical and numerical results and gives comparisons
withmax–min and open loop strategies, as well as numerical com-
parison with the suboptimal min–max strategy of Goulart, Kerri-
gan, and Alamo (2009).

2. Problem statement and notation

We consider linear discrete time systems with model
xt+1 = Axt + But + Dwt , t = 0, 1, . . . (1)
with state xt ∈ Rnx , control input ut ∈ Rnu and disturbance input
wt ∈ Rnw at time t . Here ut and wt are subject to constraints:
ut ∈ U,wt ∈ W , andU andW are assumed to be convex polytopic
sets defined by
U ,


u ∈ Rnu : Fu ≤ 1


W ,


w ∈ Rnw : Gw ≤ 1


for F ∈ RnF×nu , G ∈ RnG×nw , where 1 = [1 · · · 1]T denotes a vector
of conformal dimensions.

We define the feedback law u∗

N(x) as the solution to the follow-
ing closed loop robust optimal control problem (Bemporad et al.,
2003; Mayne, Raković, Vinter, & Kerrigan, 2006) over a finite hori-
zon of N time-steps:
u∗

m(x), w∗

m(x, u)


, argmin
u∈U

max
w∈W

Jm(x, u, w) (2a)

with Jm defined form = 1, 2, . . . ,N by

Jm(x, u, w) ,
1
2
(∥x∥2

Q + ∥u∥2
R − γ 2

∥w∥
2) + J∗m−1(x

+) (2b)

J∗m(x) , Jm

x, u∗

m(x), w∗

m(x, u∗

m(x))


(2c)

where x+
= Ax + Bu + Dw, with the terminal cost:

J∗0 (x) ,
1
2
∥x∥2

P . (2d)

Here R is a positive-definite matrix (denoted as R ≻ 0), Q is a
positive-semidefinite matrix (Q ≽ 0), ∥x∥2

Q denotes xTQx, and
the scalar γ is chosen (as discussed in Section 3.1) to be suffi-
ciently large that (2a) defines a strictly convex–concave min–max
problem. We make the assumption that P is chosen so that
∥x0∥2

P =


∞

t=0(∥xt∥
2
Q + ∥ut∥

2
R − γ 2

∥wt∥
2) with ut = uf

∞(xt) and
wt = w

f
∞(xt , ut), where uf

∞(·), w
f
∞(·) are the optimal solutions of

(2a)–(2c) in the limit as N → ∞ and in the absence of constraints
u ∈ U, w ∈ W . In order to guarantee the existence of this solu-
tionwe assume that (A, B) is controllable and (Q 1/2, A) observable.
Note that uf

∞(·), w
f
∞(·) can be computed by solving a semidefinite

programming problem (see e.g. Boyd, El Ghaoui, Feron, & Balakr-
ishnan, 1994, for details).

The problem defined in (2a)–(2d) is formulated under the as-
sumption that the disturbance wt is unknown when the control
input ut is chosen at time t . Since the solutions u∗

m(·) andw∗
m(·) de-

pend on x and on (x, u) respectively, (2a)–(2d) defines a closed loop
optimal control problem (see e.g. Lee & Yu, 1997). The sequential
nature of this min–max problem and the fact that the optimization
is performed over arbitrary feedback laws {u∗

m(x), w∗
m(x, u), m =

1, . . . ,N} imply that, unlike open-loop formulations of robust
MPC (e.g. Campo & Morari, 1987), (2a)–(2d) cannot be solved ex-
actly by a single quadratic program.

For given x0, we denote the optimal state, input and distur-
bance sequences as x(x0) = {x0, . . . , xN}, u(x0) = {u0, . . . , uN−1},

w(x0) = {w0, . . . , wN−1}, where, for t = 0, . . . ,N − 1 we define
ut = u∗

N−t(xt), wt = w∗

N−t(xt , ut) and xt+1 = Axt + But + Dwt .
As discussed in Section 4, a receding horizon control law is

obtained by setting ut = u∗

N(xt) at each time t .

3. Active set solution via Riccati recursion

This section describes a method of solving (2a)–(2d) in order
to determine u∗

N(x) for a given plant state, x = xp. Therefore
we aim at determining a local solution to the closed-loop for-
mulation of problem (2). For a given active set, we use a Riccati
recursion to solve the Karush–Kuhn–Tucker (KKT) conditions (No-
cedal & Wright, 2006) providing first-order necessary optimality
conditions for problem (2). The optimal control and disturbance
inputs for the corresponding equality constrained problem are ob-
tained as a sequence of affine state feedback functions. We give
necessary and sufficient conditions for optimality of these policies
with respect to problem (2). For the given active constraint set, our
approach then determines state, control, disturbance and multi-
plier sequences as functions of the initial state x0 using the system
model (1). As in Cannon et al. (2008), we use a line-search through
x0-space to update the active set, and the process is repeated un-
til x0 = xp. This line-search is based on homotopy of solutions to
problem (2) and the solution can either be initialized using the un-
constrained optimal control law with x0 = 0 or warm started us-
ing the optimal solution for the plant state at the preceding time
instant. Finally we discuss how the computation required by this
approach depends on the problem size.

3.1. First order optimality conditions

Let λt and λ̂t denote the Lagrange multipliers associated with
the constraints xt+1 = x̂t+1 +Dwt and x̂t+1 = Axt +But , and letµt
and ηt denote the Lagrange multipliers for the constraints ut ∈ U
and wt ∈ W respectively.

Define Lagrangian functions for the stage-wise maximization
and minimization subproblems recursively as follows:

Ĥt(x̂t+1, wt , ηt , λt , xt+1, . . . , xN) , −
1
2
γ 2

∥wt∥
2
+ ηT

t (1 − Gwt)

− λT
t (xt+1 − (x̂t+1 + Dwt))

+Ht+1(xt+1, ut+1, µt+1, λ̂t+1, x̂t+2, . . . , xN)

for the maximization subproblem and

Ht(xt , ut , µt , λ̂t , x̂t+1, . . . , xN),
1
2
∥xt∥2

Q +
1
2
∥ut∥

2
R − µT

t (1 − Fut)

− λ̂T
t (x̂t+1 − (Axt + But)) + Ĥt(x̂t+1, wt , ηt , λt , xt+1, . . . , xN)

for the minimization subproblem, with terminal condition HN(xN)
= J∗0 (xN) =

1
2∥xN∥

2
P .

Lemma 1. The solution of problem (2) at time-step t satisfies

J∗N−t(xt) = min

1
2
∥xt∥2

Q +
1
2
∥ut∥

2
R

+ Ĥt(x̂t+1, wt , ηt , λt , xt+1, . . . , xN)


(3)

where the minimization is over variables ut , x̂t+1, and wj, ηj, λj, xj+1

for j = t, . . . ,N − 1 and uj, µj, λ̂j, x̂j+1 for j = t + 1, . . . ,N − 1
and subject to the constraints: x̂t+1 = Axt + But , Fut ≤ 1, and
∇wj Ĥj = 0, ∇xj+1 Ĥj = 0 for j = t, . . . ,N − 1, and ∇ujHj = 0,
∇x̂j+1Hj = 0 for j = t + 1, . . . ,N − 1. Furthermore the objective
of the maximization in (2) at time-step t, defined by Ĵ∗N−t(x̂t+1)
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