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a b s t r a c t

In this paper, we consider the distributed maximum likelihood estimation (MLE) with dependent quan-
tized data under the assumption that the structure of the joint probability density function (pdf) is known,
but it contains unknown deterministic parameters. The parameters may include different vector parame-
ters corresponding to marginal pdfs and parameters that describe the dependence of observations across
sensors. Since MLE with a single quantizer is sensitive to the choice of thresholds due to the uncertainty
of pdf, we concentrate on MLE with multiple groups of quantizers (which can be determined by the use
of prior information or some heuristic approaches) to fend off against the risk of a poor/outlier quantizer.
The asymptotic efficiency of the MLE scheme with multiple quantizers is proved under some regularity
conditions and the asymptotic variance is derived to be the inverse of a weighted linear combination of
Fisher information matrices based on multiple different quantizers which can be used to show the ro-
bustness of our approach. As an illustrative example, we consider an estimation problemwith a bivariate
non-Gaussian pdf that has applications in distributed constant false alarm rate (CFAR) detection systems.
Simulations show the robustness of the proposed MLE scheme especially when the number of quantized
measurements is small.

Published by Elsevier Ltd

1. Introduction

Wireless sensor networks have attracted much attention with
a lot of research taking place over the past several years. Many
advances have been made in distributed detection, estimation,
tracking and control (see e.g., Veeravalli & Varshney, 2012 and ref-
erences therein). Distributed estimation and quantization prob-
lems have been considered in a number of previous studies. The
parameters to be estimated aremodeled as random and determinis-
tic in different situations. We concentrate on deterministic param-
eters in this paper. For deterministic parameters, several universal
distributed estimation schemes have been proposed (Xiao, Ribeiro,
Luo, & Giannakis, 2006) in the presence of unknown, additive sen-
sor noises that are bounded and identically distributed. The work
in Fang and Li (2009) proposed the vector quantization design for
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distributed estimation under the assumption of an additive obser-
vation noise model.

System identification based on quantized measurements is a
challenging problem even for very simple models and has been
researched for a wide range of applications (see, e.g., Wang, Yin,
Zhang, & Zhao, 2010). A method for the recursive identification
of the nonlinear Wiener model was developed in Wigren (1995)
and the corresponding convergence properties were analyzed. In
Godoy, Goodwin, Aguero, Marelli, and Wigren (2011), Godoy et al.
developed an MLE approach and used a scenario-based form of
the expectation maximization algorithm to parameter estimation
for general MIMO FIR linear systems with quantized outputs. The
problem of set membership system identification with quantized
measurementswas considered in Casini, Garulli, andVicino (2012).
In Gustafsson and Karlsson (2009), the results from statistical
quantization theory were surveyed and applied to both moment
calculations and the likelihood function of the measured signal.
The system identification of ARMA models using intermittent and
quantized output observations was proposed in Marelli, You, and
Fu (2013). The formal conditions for the asymptotic normality of
the MLE to the reliability of a complex system based on a combi-
nation of full system and subsystem tests were proposed in Spall
(2012).

In previous works, the MLE with quantized data is extensively
used to estimate the deterministic parameters. In this paper, robust
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distributed MLE with dependent quantized data is considered.
Our work differs from previous studies in several aspects.
Previous results concentrate on the problem of how to design the
quantization schemes for estimating a deterministic parameter
where each sensor makes one noisy observation. The observations
are usually assumed independent across sensors, and they discuss
the relationship between MLE performance and the number of
sensors. Here,we focus on the problemof how to design estimation
schemes for the unknown parameter vector associated with the
joint pdf of the observations where the number of sensors is fixed.
The emphasis here is on system robustness. These observations
may be dependent across sensors. The unknown parameters may
include different vector parameters corresponding to marginal
pdfs and parameters that describe dependence of observations
across sensors. Actually, the dependence between sensors is very
important in multisensor fusion systems; for example, see the
recent work on distributed location estimation with dependent
sensor observations (Sundaresan & Varshney, 2011).

In this paper, we investigate the performance of MLE with mul-
tiple quantizers, since MLE with a single quantizer is sensitive to
the choice of thresholds due to the uncertainty of pdf (see, e.g.,
Fang & Li, 2008). Our main contribution is that we analytically de-
rive the asymptotic efficiency and robustness of a practical MLEwith
multiple quantizers in the context of dependent quantized mea-
surements at the sensors, unknown parameter vector and without
the knowledge ofmeasurementmodels. Thedifficulties include the
fact that due to dependence between measurements across sen-
sors, the unknown high dimensional vector parameter estimation
problem cannot be decoupled to scalar parameter estimation prob-
lems, and the quantized samples are not identically distributed due
to the use of multiple different quantizers. Therefore, we have to
dealwith unknown vector parameter and unidentically distributed
samples simultaneously. The asymptotic variance is derived to be
the inverse of a weighted linear combination of Fisher information
matrices based on J different quantizerswhich can beused to verify
the robustness of our approach. A typical estimation problemwith
a bivariate non-Gaussian pdf with application to the distributed
CFAR detection systems is considered. Simulations show that the
new MLE scheme is robust and much better than that based on
the worst quantization scheme from among the groups of quan-
tizers. Moreover, when the number of quantized measurements is
small, a surprising result is that the robust MLE has a significant
and dominated advantage over the MLE with a single quantizer. It
is also shown that the performance of the robust MLE is not the av-
erage performance of multiple quantizers. The rest of the paper is
organized as follows. Problem formulation is given in Section 2. In
Section 3, the robust MLE scheme is proposed and the asymptotic
results are derived. In Section 4, numerical examples are given and
discussed. In Section 5, conclusions are made.

2. Problem formulation

The basic L-sensor distributed estimation system is considered
(see Fig. 1). Each sensor has ki-dimensional observation popula-
tion Yi, i = 1, . . . , L. Suppose that the joint observation population
Y , (Y ′

1, . . . , Y
′

L)
′ has a given family of joint pdf:

{p(y1, . . . , yL|θ)}θ∈Θ⊆Rk (1)
where ′ denotes the transpose and θ is the unknown k-dimensional
deterministic parameter vector which may include marginal pa-
rameters and dependence parameters. Here, we do not assume in-
dependence across sensors, knowledge of measurement models
and Gaussianity of the joint pdf. Let N be independently and iden-
tically distributed (i.i.d.) sensor observation samples and joint ob-
servation samples be

Y⃗i = (Yi1, . . . , YiN), i = 1, . . . , L; (2)

Y⃗ = (Y⃗ ′

1, . . . , Y⃗
′

L)
′. (3)

Suppose the sensors and the fusion center wish to jointly
estimate the unknown parameter vector θ based on the spa-
tially distributed observations. If there is sufficient communication
bandwidth and power, the fusion center can obtain asymptotically
efficient estimates with the complete observation samples based
on the MLE procedure under some regularity conditions on the
joint pdf.

In many practical situations, however, to reduce the communi-
cation requirement from sensors to the fusion center due to limited
communication bandwidth and power, the i-th sensor quantizes
the observation vector to 1 bit (it is straightforward to extend to
multiple bits) by a measurable indicator quantization function:

Ii(yi) : yi ∈ Rki → {0, 1}, (4)
for i = 1, . . . , L. Here, the quantization region of each quantizer
Ii(yi) may be continuous or union of discontinuous regions. More-
over, we denote by

I(y) , (I1(y1), . . . , IL(yL))′ ∈ RL. (5)
Once the binary quantized samples Ii(Yin) are generated at sen-

sor i, i = 1, . . . , L, they are transmitted to the fusion center, for
n = 1, . . . ,N . The fusion center is then required to estimate the
true parameter vector θ∗ based on the received quantized data. By
the definition of observation samples and quantizers, we define

U⃗ , (U⃗ ′

1, . . . , U⃗
′

N)′, (6)

U⃗n , (U1n, . . . ,ULn)
′, n = 1, . . . ,N, (7)

Uin , Ii(Yin), n = 1, . . . ,N. (8)

If we take U⃗n as the joint quantized observation sample and denote
the quantized observation population by U , I(Y ) = (I1(Y1), . . . ,
IL(YL))

′, we know that U has a discrete/categorical distribution.
Based on the pdf of Y and quantizers I(y), the probability mass
function (pmf) of the quantized observation population U is
fU(u1, u2, . . . , uL|θ)

=


Ξ(u1,u2,...,uL)

p(y1, y2, . . . , yL|θ)dy1dy2 · · · dyL, (9)

where
(u1, u2, . . . , uL) ∈ Su

= {(u1, u2, . . . , uL) ∈ RL
: ui = 0/1, i = 1, . . . , L}, (10)

Ξ(u1,u2,...,uL) = {(y1, y2, . . . , yL) : I1(y1) = u1,

I2(y2) = u2, . . . , IL(yL) = uL}. (11)
Thus, the quantized observation population U has a family of joint
pmf {fU(u1, u2, . . . , uL|θ)}θ∈Θ⊆Rk which yields the following log
likelihood function of samples U⃗ by (6)–(11):

l(θ |U⃗) , log
N

n=1

fU(U1n,U2n, . . . ,ULn|θ) (12)

=

N
n=1

log fU(U1n,U2n, . . . ,ULn|θ) (13)

=

2L
j=1

nj log fU(u⃗j|θ) (14)

where nj = #{(U1n,U2n, . . . ,ULn) = u⃗j ∈ Su, n = 1, . . . ,N},2L
j=1 nj = N; #{·} is the cardinality of the set. The parameter vec-

tor θ is estimated by maximizing the log likelihood function (14).
Let θ̂ denote the MLE of θ .

Based on the classical asymptotic properties of MLE (see,
e.g., textbooks Casella & Berger, 2001; Van der Vaart, 2000), we
have the following lemma.

Lemma 1. Assume that p(y1, y2, . . . , yL|θ) and sensor quantizers
I1(y1), . . . , IL(yL) generate the quantized samples and fU(u1, u2, . . . ,
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