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a b s t r a c t

In this paper, an integral reinforcement learning (IRL) algorithm on an actor–critic structure is developed
to learn online the solution to theHamilton–Jacobi–Bellman equation for partially-unknown constrained-
input systems. The technique of experience replay is used to update the critic weights to solve an
IRL Bellman equation. This means, unlike existing reinforcement learning algorithms, recorded past
experiences are used concurrently with current data for adaptation of the critic weights. It is shown that
using this technique, instead of the traditional persistence of excitation condition which is often difficult
or impossible to verify online, an easy-to-check condition on the richness of the recorded data is sufficient
to guarantee convergence to a near-optimal control law. Stability of the proposed feedback control law is
shown and the effectiveness of the proposed method is illustrated with simulation examples.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, an integral reinforcement learning (IRL) algorithm
is developed to find optimal control solutions online for partially-
unknown continuous-time systems subject to input constraints.
Moreover, the idea of the experience replay is used to learn op-
timal solutions more efficiently by using past experiences during
learning. It is well known that optimal control solutions can be de-
rived by solving the Hamilton–Jacobi–Bellman (HJB) equation. The
HJB equation is nonlinear and extremely intractable to solve by
analytical approaches (Lewis, Vrabie, & Syrmos, 2012); thus sev-
eral approximatemethods have been presented in the literature to
address the optimal control solutions. Traditional approaches for
approximating the HJB solution are normally offline and require
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complete knowledge of the system dynamics. In practical applica-
tions, however, it is often desirable to design controllers conducive
to real-time implementation and able to handle modeling uncer-
tainties.

Over the last few decades, reinforcement learning (RL) (Bert-
sekas & Tsitsiklis, 1996; Powell, 2007; Sutton & Barto, 1998) has
been effectively used to design learning-based adaptive optimal
controllers. Considerable research has been conducted for ap-
proximating the HJB solution for discrete-time systems using RL
algorithms. However, few results are available for continuous-
time systems (Abu-Khalaf & Lewis, 2005; Beard, 1995; Bhasin
et al., 2012; Doya, 2000; Murray, Cox, Lendaris, & Saeks, 2002;
Vamvoudakis & Lewis, 2010; Vamvoudakis, Vrabie, & Lewis, 2013;
Vrabie & Lewis, 2009). A survey of RL-based feedback control
designs is found in Lewis and Vrabie (2009), Lewis, Vrabie, and
Vamvoudakis (2012).

Existing online RL-based algorithms for solving the HJB equa-
tion for continuous-time (CT) nonlinear systems either require
complete knowledge of the system dynamics (Doya, 2000;
Vamvoudakis & Lewis, 2010) or lack a rigorous stability analysis
(Doya, 2000; Murray et al., 2002), except for Bhasin et al. (2012);
Vamvoudakis et al. (2013). In Bhasin et al. (2012), a system identi-
fication procedure was used along with the RL to find the opti-
mal control solution for partially-unknown systems. Vamvoudakis
et al. (2013) presented an IRL-based algorithm for partially-
unknown systems which does not require a system identification
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procedure. In fact, the IRL algorithm (Vrabie, Pastravanu, Abu-
Khalaf, & Lewis, 2009; Vrabie & Lewis, 2009) allows development
of a Bellman equation in such a way that does not contain the sys-
tem dynamics.

The existing mentioned RL-based control design methods did
not take into account the input constraints caused by actuator sat-
uration. However, failure to account for actuator saturation often
severely destroys the system performance, or may even lead to in-
stability. In our recent work (Modares, Lewis, & Naghibi-Sistani,
2012), we presented an online algorithm to solve the H∞ control
problem for constrained-input systems. Nevertheless, it requires
complete knowledge of the system dynamics.

Another problem related to the existing online RL-based con-
trol design methods is that to guarantee convergence to a near-
optimal control solution, a persistence of excitation (PE) condition
is required to be satisfied. However, traditional PE conditions are
often difficult or impossible to check online. Also, due to the re-
quirement for the PE condition, the existing RL-based algorithms
for CT systems are sample inefficient, that is, they require many
samples from the real world in order to learn the optimal policy.

In order to reduce sample complexity and use available data
more effectively, the experience replay technique has been pro-
posed in the context of RL for discrete-time systems (Adam,
Busoniu, & Babuska, 2012; Dung, Komeda, & Takagi, 2008;
Kalyanakrishnan & Stone, 2007; Lin, 1992; Wawrzynski, 2009;
Xu, Jagannathan, & Lewis, 2012), without providing a proof of
convergence and stability. In this technique, a number of recent
samples are stored in a database and they are presented repeat-
edly to the underlying RL algorithm. A related idea called concur-
rent learningwas introduced in Chowdhary (2010) andChowdhary
and Johnson (2010) for adaptive control of uncertain systems. They
showed that the concurrent use of recorded and current data can
lead to the stability of amodel reference adaptive controller as long
as the recorded data is sufficiently rich. However, their resultswere
focused on direct adaptive control, and in particular, that work did
not establish any optimality guarantees on the closed-loop system.

The contributions of this paper are introducing for the first time
the use of the experience replay to the IRL (Vrabie & Lewis, 2009)
algorithms and incorporating the actuator limitations into control
design. Specifically, in a first contribution, our proposed IRL algo-
rithm takes into account the input constraints caused by actuator
saturation, in contrast to the existing IRL algorithms (Vamvoudakis
et al., 2013; Vrabie & Lewis, 2009) and other online RL-based algo-
rithms for uncertain CT systems. Second, it is shown that the ex-
perience replay provides simplified conditions to check for PE-like
requirements in real time bymore efficient use of current and past
data. The closed-loop stability of the overall system is ensured by
using the Lyapunov theory. Simulations show that using the expe-
rience replay in the critic weights’ tuning law significantly speeds
up the convergence.

This paper is organized as follows. The next section provides an
overview of the optimal control for CT systems with input con-
straints. Section 3 presents an offline IRL algorithm for solving
the optimal control problem. The proposed online IRL algorithm
with experience replay is presented in Section 4. Sections 5 and 6
present simulation results and conclusion, respectively.

2. Optimal control problem for systems with input constraints

In this section, the optimal control problem for CT systemswith
input constraints is formulated.

Let the system dynamics be described by

ẋ(t) = f (x(t)) + g(x(t)) u(t) (1)

where x ∈ Rn is the system state vector, f (x) ∈ Rn is the drift
dynamics of the system, g(x) ∈ Rn×m is the input dynamics of

the system and u(t) ∈ Rm is the control input. We denote Ωu =

{u|u ∈ Rm, |ui(t)| 6 λ, i = 1, . . . ,m} as the set of all inputs
satisfying the input constraints, where λ is the saturating bound.
It is assumed that f (x) + g(x) u is Lipschitz and the system (1) is
stabilizable.

The problem of interest in this paper is to find an optimal
constrained policy u∗ that drives the state of the system (1) to the
origin, by minimizing a performance index as a function of state
and control variables. The performance index is defined as

V (x(t)) =


∞

t
Q (x(τ )) + U(u(τ )) dτ (2)

whereQ (x) is a positive definitemonotonically increasing function
and U(u) is a positive definite integrand function.

Assumption 1. Theperformance index (2) is zero-state observable
(Lewis, Jagannathan, & Yesildirek, 1999).

Definition 1 (Beard, 1995). A control policy u(t) = µ(x(t)) ≡

µ(x) is said to be admissible with respect to (2) on Ω , defined by
µ ∈ π(Ω), if µ(x) is continuous on Ω , µ(0) = 0, u(t) = µ(x)
stabilizes (1) on Ω , and V (x0) is finite ∀x0 ∈ Ω .

To deal with input constraints, the following generalized non-
quadratic cost function U(u) is employed in the literature (Abu-
Khalaf & Lewis, 2005; Lyshevski, 1998):

U(u) = 2
 u

0
(λ β−1(v/λ))TR dv (3)

where v ∈ Rm, β(.) = tanh(.), and R = diag(r1, . . . , rm) > 0 is
assumed to be diagonal for simplicity of analysis. Denote ω(v) =

(λβ−1(v/λ))TR = [ω1(v1) . . . ωm(vm)]. Then the integral in (3) is
defined as

U(u) = 2
 u

0
ω(v) dv = 2

m
i=1

 ui

0
ωi(vi) dvi. (4)

It is clear that U(u) in (3) is a scalar for u ∈ Rm. Using (3) in (2), the
performance index becomes

V (x(t)) =


∞

t


Q (x(τ )) + 2

 u

0
(λ tanh−1(v/λ))TR dv


dτ . (5)

By differentiating V along the system trajectories, the following
Bellman equation is given:

Q (x) + 2
 u

0
(λ tanh−1(v/λ))TR dv

+ ∇V T (x) (f (x) + g(x) u) = 0, V (0) = 0 (6)

where ∇V (x) = ∂V (x)/∂x ∈ Rn. Let V ∗(x) be the optimal value
function. Then, it satisfies the Hamilton–Jacobi–Bellman (HJB)
equation (Abu-Khalaf & Lewis, 2005)

min
u(τ )∈π(Ω)
t6τ<∞


Q (x) + 2

 u

0
(λ tanh−1(v/λ))TR dv

+ ∇V ∗T (x) (f (x) + g(x) u)


= 0. (7)

The optimal control input is obtained by differentiating the HJB
equation (7) with respect to the control u. The result is

u∗
= −λ tanh


(1/2λ)R−1gT (x) ∇V ∗(x)


. (8)

Using (8) in (3) yields

U(u∗) = λ∇V ∗T (x)g(x) tanh(D∗) + λ2 R̄ ln(1 − tanh2 (D∗)) (9)

where D = (1/2λ) R−1gT
∇V ∗(x) ∈ Rm, 1 is a column vector hav-

ing all of its elements equal to one, and R̄ = [r1, . . . , rm] ∈ R1×m.
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