
Automatica 50 (2014) 211–217

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

An extension of the prediction scheme to the case of systems with
both input and state delay✩

Vladimir L. Kharitonov 1

Faculty of Applied Mathematics and Control Processes St.-Petersburg State University 198504, St.-Petersburg, Russia

a r t i c l e i n f o

Article history:
Received 17 November 2012
Received in revised form
29 August 2013
Accepted 24 September 2013
Available online 23 October 2013

Keywords:
Time-delay systems
Prediction schemes
Stabilization

a b s t r a c t

In this contribution we present an extension of the prediction scheme proposed in Manitius and Olbrot
(1979) for the compensation of the input delay to the case of linear systems with both input delay and
state delay. For simplicity of the presentation we treat the case of systems with one state delay.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In the Introduction Chapter of the recently published book
(Krstic, 2009) it is stated that ‘‘the area of control design for sys-
tems with simultaneous input and state delay is underdeveloped’’.
At the same time, it is mentioned there that the stabilizing prob-
lems for systems with state delay only ‘‘are the easiest in our list
as they can be solved using finite dimensional feedback laws’’. In
this contributionwe present an extension of the prediction scheme
proposed in Manitius and Olbrot (1979) for the compensation of
the input delay in the computation of stabilizing controllers for lin-
ear systemswith both input delay and state delay. For simplicity of
the presentation we treat the case of systems with one state delay,
but the presented results can be extended to the case of systems
with multiple state delays, as well.

In Section 2we provide basic notations used in the contribution
and give the formulation of the stabilization problem for systems
with input and state delay. Section 3 is devoted to the computa-
tion of the stabilizing control laws. Similar to the case of systems
with input delay we start with an explicit expression for the solu-
tion of an initial value problem for a time-delay system. Then, we
apply this expression for the computation of future states in the
form of functionals that depend on the present and past states of
the time-delay system. And, finally, we compute the desired stabi-
lizing control law. The stabilizing law is of the form of an integral
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equation, similar to that obtained in Manitius and Olbrot (1979),
with some additional terms due to the presence of the state de-
lay in the system. Section 4 is dedicated to the stability analysis of
the closed-loop system. The principal result of the section is an up-
per exponential estimate for the solutions of the closed-loop sys-
tem. In Section 5 some basic results concerning the complete type
functionals for an exponentially stable system are given. In Sec-
tion 6 we present a Lyapunov–Krasovskii type stability analysis of
the closed-loop system. The key element of the analysis is a sim-
ple modification of the backstepping transformation of the control
variable proposed in Krstic and Smyshlyaev (2008). This transfor-
mation allows us to present the closed-loop system in a formmore
appropriate for the consequent stability analysis. Here we propose
for the transformed systema Lyapunov functional, similar to that of
Krstic (2009), with a single modification: we use a complete type
functional instead of the quadratic Lyapunov form used in Krstic
(2009). As a result we obtain an upper exponential estimate for the
solutions of the transformed system and derive a similar exponen-
tial estimate for the original control variable. Several examples il-
lustrating the computation of the stabilizing control laws are given
in Section 7.

2. Problem formulation

Given a time-delay system of the form

dx(t)
dt

= A0x(t)+ A1x(t − h)+ Bu(t − τ), (1)

where Aj, j = 0, 1, are real n × n matrices, and B is a real n × m
matrix. The system delays satisfy the inequalities 0 < h ≤ τ . The
opposite case, τ < h, can be treated similarly with trivial modifi-
cations. Let t0 ≥ 0 be an initial time instant and ϕ : [−h, 0] → Rn
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be an initial function. We assume that the function belongs to the
space of piece-wise continuous functions, PC([−h, 0], Rn), defined
on the segment [−h, 0]. Let x(t, t0, ϕ) stand for the solution of sys-
tem (1) under the initial condition

x(t0 + θ, t0, ϕ) = ϕ(θ), θ ∈ [−h, 0],

and xt(t0, ϕ) denote the restriction of the solution to the segment
[t − h, t]

xt (t0, ϕ) : θ → x (t + θ, t0, ϕ) , θ ∈ [−h, 0] .

We omit arguments t0 and ϕ in these notations and write x(t) and
xt instead of x(t, t0, ϕ) and xt(t0, ϕ), when no confusion may arise.

The euclidean norm is used for vectors, and the induced matrix
norm for matrices. For elements of the space PC([−h, 0], Rn) we
use the uniform norm

∥ϕ∥h = sup
θ∈[−h,0]

∥ϕ(θ)∥ .

In the followingwe assume that there existmatrices F0 and F1, such
that the system

dx(t)
dt

= (A0 + BF0) x(t)+ (A1 + BF1) x(t − h) (2)

is exponentially stable.
Problem: Find a control law under which system (1), for t ≥ τ ,
coincides with (2).

3. General scheme

Let us denote by K(t) the fundamental matrix of system (1);
see Bellman & Cooke, 1963. The matrix satisfies the equation
d
dt

K(t) = A0K(t)+ A1K(t − h), t ≥ 0,

and the initial conditions: K(t) = 0n×n, t < 0, K(0) = I .
Given an initial time instant t0 ≥ 0, and an initial function

ϕ ∈ PC([−h, 0], Rn), then the corresponding solution of system
(1) can be written as

x(t, t0, ϕ) = K(t − t0)ϕ(0)+

 0

−h
K(t − t0 − θ − h)A1ϕ(θ)dθ

+

 t

t0
K(t − ξ)Bu(ξ − τ)dξ, t ≥ t0.

In particular this means that

x(t + τ) = K(τ )x(t)+

 0

−h
K(τ − θ − h)A1x(t + θ)dθ

+

 0

−τ

K(−ξ)Bu(t + ξ)dξ, t ≥ 0, (3)

and

x(t + τ − h) = K(τ − h)x(t)+

 0

−h
K(τ − θ − 2h)A1x(t + θ)dθ

+


−h

−τ

K(−h − ξ)Bu(t + ξ)dξ, t ≥ 0. (4)

We start with a control law of the form

u(t) = F0x(t + τ)+ F1x(t + τ − h), t ≥ 0,

where x(t + τ) and x(t + τ − h) in the right-hand side of the
preceding expression are replaced by (3) and (4), respectively. As a
result we arrive at a control law of the form

u(t) = f (ut , xt), t ≥ 0,

where

ut : ξ → u(t + ξ), ξ ∈ [−τ , 0],

and the functional f (ψ, ϕ) is defined on the direct product of the
functional spaces PC([−τ , 0], Rm)× PC([−h, 0], Rn) as follows:

f (ψ, ϕ) = [F0K(τ )+ F1K(τ − h)]ϕ(0)

+

 0

−h
F0K(τ − θ − h)A1ϕ(θ)dθ

+

 0

−h
F1K(τ − θ − 2h)A1ϕ(θ)dθ

+

 0

−τ

F0K(−ξ)Bψ(ξ)dξ

+


−h

−τ

F1K(−h − ξ)Bψ(ξ)dξ .

In the explicit form this control law is given by the integral equa-
tion

u(t) =

 0

−τ

F0K(−ξ)Bu(t + ξ)dξ

+


−h

−τ

F1K(−h − ξ)Bu(t + ξ)dξ

+

 0

−h
F0K(τ − θ − h)A1x(t + θ)dθ

+

 0

−h
F1K(τ − θ − 2h)A1x(t + θ)dθ

+ [F0K(τ )+ F1K(τ − h)] x(t), t ≥ 0. (5)

Remark 1. For h = 0 system (1) is of the form

dx(t)
dt

= (A0 + A1) x(t)+ Bu(t − τ),

and K(t) = e(A0+A1)t . In this case Eq. (5)

u(t) = Fe(A0+A1)τ +

 t

t−τ
Fe(A0+A1)(t−θ)Bu(θ)dθ,

where F = F0 + F1 coincides with the classical prediction control
obtained through various different approaches (Artstein, 1982;
Kwon & Pearson, 1980; Manitius & Olbrot, 1979).

A particular solution of the integral equation is defined by an initial
function ψ ∈ PC ([−τ , 0], Rm),

u(t) = ψ(t), t ∈ [−τ , 0).

The control law (5) is such that for t ∈ [0, τ ) system (1) under this
control is of the form
dx(t)
dt

= A0x(t)+ A1x(t − h)+ Bψ(t − τ),

while for t ≥ τ the system coincides with system (2).

Remark 2. It may happen that the spectrum of the closed-loop
system is finite. One such case has been reported in Bekiaris-Liberis
and Krstic (2010). Here we observe that if a matrix A1 is such that
A1 + BF1 = 0, then the spectrum of the closed-loop system (1), (5)
coincides with that of the matrix A0 + BF0.

4. Exponential estimates

Any particular solution of the closed-loop system (1), (5) is de-
fined by the corresponding initial conditions

x(t) = ϕ(t), t ∈ [−h, 0], ϕ ∈ PC([−h, 0], Rn),

u(t) = ψ(t), t ∈ [−τ , 0), ψ ∈ PC([−τ , 0], Rm).
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