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a b s t r a c t

This paper addresses the problem of designing controllers that are robust to a great uncertainty in a time
constant of the plant. Plants must be represented by minimum phase rational transfer functions of an
arbitrary order. The design specifications are: (1) a phasemargin for the nominal plant, (2) a gain crossover
frequency for the nominal plant, (3) zero steady state error to step commands, and (4) a constant phase
margin for all the possible values of the time constant (T ): 0 < T < ∞. We propose a theorem that
defines the structure of the set of controllers that fulfil these specifications and show that it is necessary
for these robust controllers to include a fractional-order PI term. Examples are developed for both stable
and unstable plants, and the results are compared with a standard PI controller and a robust controller
designed using the QFT methodology.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

This article studies control systems that are robust to large un-
certainties in a time constant. We have designed controllers that
preserve the value of the phase margin. This allows us to approxi-
mately preserve: (a) the system damping, and (b) some robustness
features, signifying that small changes in other parameters do not
excessively degrade the performance of the closed-loop system.

Examples of systems whose linear models often undergo
changes in one of their time constants as a consequence of their
operating regimes – signifying that this time constant cannot be
accurately determined and thus preventing a proper tuning of the
controller – are: DC-motors with a variant electrical or mechanical
time constant owing to changes in temperature, machining force
processes in metal cutting when the depth-of-cut increases, elec-
trical circuits in which the value of the resistance or capacitance of
its elements may vary as a result of strong environmental changes,
high pressure flow recycling systems powered by pumps or com-
pressors, etc. What is more, many complex systems have a domi-
nant real pole whose variation is a main concern, while variations
of the secondary poles are considered to have little influence on
the dynamics.
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Various techniques that allow robust closed-loop systems to
be obtained have been developed on the basis of the frequency
response. The most popular are the H∞, and the QFT methods.
These are well suited to the design of robust controllers for plants
that exhibit bounded uncertainties, but they experience difficul-
ties in managing plants that undergo extreme variations in some
parameters—and consequently exhibit large parameter uncertain-
ties.

One of the first works on the design of control systems that are
robust to great uncertainties in a plant parameter was carried out
by Bode, who in 1945 studied the feedback amplifier design (Bode,
1945) and found that the optimal number of stages, as regards
maintaining the phase margin constant (relative stability) when
the amplifier gain undergoes great changes, is non-integer. This led
to an open-loop transfer function of the formG(s) = K/sα, α ∈ ℜ,
which exhibits a constant phase in a broad frequency interval (flat
phase diagram) around the gain crossover frequency. Changes in
the system gain therefore modify the gain crossover frequency
but the phase margin is preserved. Oustaloup (1991) used this
idea as a basis to develop a methodology with which to design
robust control systems using fractional-order controllers: the
CRONE method. Three generations of CRONE controllers have been
developed. The first and second generations use algebraicmethods
to obtain the open-loop ‘‘Bode’s ideal transfer function’’. The third
CRONE generation method (Lanusse, Oustaloup, & Mathieu, 1993)
deals with model uncertainties other than the gain, and attains
robustness by minimizing a cost related to the variation of the
closed-loop system damping.

Preserving a phase margin when plant parameters are un-
certain implies that damping, or step input response overshoot,
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remains approximately constant. This iso-damping feature has
been designed for the case of system gain uncertainties by impos-
ing the local property that the derivative of the phase with regard
to the frequency must be zero at the gain crossover frequency,
i.e., the local phase flatness property. This property allows only
limited parameter uncertainties. Standard PID controllerswere de-
signed with this property in Chen and Moore (2005), in addition
to fractional-order PI controllers (Monje, Vinagre, Chen, & Feliu,
2004), and fractional-order PID controllers (Monje, Vinagre, Feliu,
& Chen, 2008).

Controllers with predefined structures were designed to
achieve a nominal phase margin and gain crossover frequency,
and the local phase flatness robustness property. For example,
fractional-order controllers with the structures Kp + Ki/sα and
(Kp + Kss)α were designed in Luo and Chen (2009) for the case of
an integrator plus a fractional-order pole plant, and amethodology
with which to design controllers of the form Kp + Ki/sα for a first
order plus time delay plant was presented in Luo and Chen (2012).
Moreover, the phase margin was preserved for the robust motion
control of a first-order plus time delay in series with an integrator
plant, which exhibited a time constant with limited variation, by
using a controller of the form (Kp + Kss)α (Jin, Chen, & Xue, 2011).

This article defines the family of controllers that ‘‘perfectly’’
preserve the phase margin in the case of stable minimum
phase plants of an arbitrary order, subject to an arbitrarily large
uncertainty in one plant time constant. It additionally shows that
these controllers can be used in unstable plants. Unlike the three
previousworks, no ‘‘a priori’’ structure is imposed on the controller
(of either an integer or fractional order nature), and the ‘‘flat phase
condition’’ is imposed globally for all the frequencies rather than
locally, thus permitting arbitrary time constant variations.

The paper is organized as follows. Section 2 presents the robust
control design problem. Section 3 develops the main result of this
article. Section 4 develops two illustrative examples and Section 5
states some conclusions.

2. Problem statement

Let us consider a single input–single output linear plant with
the transfer function G(s, T ):

G(s, T ) =
1

1 + sT
Ĝ(s), (1)

where T is the unknown time constant that takes a value in the
interval 0 ≤ T < ∞, and Ĝ(s) is a stable and minimum phase
rational transfer function which represents the well determined
part of the plant. The nominal plant G(s, T0) corresponds to the
nominal value T0 of the variable time constant.

Let us then consider a unity feedback control scheme whose
feedforward path consists of a generic controller, R(s), in series
with the plant, G(s, T ). The controller can be designed using three
specifications (see Jin et al., 2011):

(1) Phase margin φ for the nominal plant G(s, T0).
(2) Gain crossover frequency ωc0 for the nominal plant G(s, T0).
(3) Robustness condition to changes in the time constant:

dArg(G(jω, T )R(jω))

dω


ω=ωc0,T=T0

= 0. (2)

The first two specifications for the nominal plant can be ex-
pressed in a compact form by using the complex equation:

− ejφ =
Ĝ(jωc0)

1 + jωc0T0
R(jωc0). (3)

The third specification (2) is a ‘‘local’’ robustness condition which
pursues a robust phase margin property for limited parameter
variations. From here on this robustness property will be referred
to as a local isophase margin condition. In this article, this ‘‘local’’
condition is substituted by the following ‘‘global’’ isophase margin
condition.

Global IsophaseMargin Criterion. The closed-loop system (G, R) is
robust to uncertainties in parameter T in the interval T ∈ [0, ∞),
in the sense that its phase margin remains constant if condition

− ejφ =
Ĝ(jωc)

1 + jωcT
R(jωc) (4)

is verified in the entire range of variation of T . In this expression,
ωc is the gain crossover frequency of G(s, T )R(s) that corresponds
to a value T .

The objective of this article is, therefore, not only to tune
the parameters of controller R(s) but to determine the structure
of the controller that fulfils the constant phase margin robustness
condition (4).

Condition (4) involves two variables: T and ωc . They are not
independent because a given value of the time constant defines
a gain crossover frequency value by solving Eq. (4). Let us define
this relation by using the function T = f (ωc), and denote it as the
‘‘T − ωc function’’.

3. The main result

Assuming that controller R(s) is known, function f can be
obtained by means of (4). It can be numerically attained by solving
(4) for given values of ωc . But this procedure has the drawback
that if R(s) does not have the right structure then the resulting
values of T will be complex numbers, which do not have any
physicalmeaning. The family of controllers R(s) that verify (4)must
therefore yield a real relation (real function) between the varying
time constant and its corresponding gain crossover frequencyωc . This
function must verify the nominal condition

T0 = f (ωc0). (5)

Controllers verifying (4) are provided in the following theorem.

Theorem. Consider a plant of the form (1) whose varying time
constant may take values in the interval 0 ≤ T < ∞. The controller
R(s) of lowest order which:

(1) preserves a desired phasemarginφ (0 < φ < 90°) of G(s, T )R(s)
in the entire range of variation of T ,

(2) yields a desired gain crossover frequency valueωc0 at a particular
time constant value T0, and

(3) exhibits zero steady state error to step commands

consists of the series connection of a fractional-order PI controller
(hereafter denoted as the FPI controller) and the inverse of the well
determined part of the dynamics of the plant. This controller is given
by:

R(s) =


tan(φ) + ωc0T0

ωα
c0


sα −

1
cos(φ)


  

FPI controller

Ĝ−1(s), (6)

where α is a negative value:

α =
2
π

φ − 1 (7)

and the ‘‘T − ωc function’’ that describes the relationship yielded
by this controller between the time constant and the gain crossover
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