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a b s t r a c t

The event-triggered state estimation problem for linear time-invariant systems is considered in the
framework of Maximum Likelihood (ML) estimation in this paper. We show that the optimal estimate
is parameterized by a special time-varying Riccati equation, and the computational complexity increases
exponentially with respect to the time horizon. For ease in implementation, a one-step event-based ML
estimation problem is further formulated and solved, and the solution behaves like a Kalman filter with
intermittent observations. For the one-step problem, the calculation of upper and lower bounds of the
communication rates from the process side is also briefly analyzed. An application example to sensorless
event-based estimation of aDCmotor system is presented and the benefits of the obtainedone-step event-
based estimator are demonstrated by comparative simulations.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In wireless sensor networks, smart sensors and actuators are
normally powered by batteries with limited capacity (Akyildiz,
Su, Sankarasubramaniam, & Cayirci, 2002) and usually perform
two types of tasks (Culler, Estrin, & Srivastava, 2004; Sveda &
Vrba, 2003): simple calculation (including data acquisition) and
data transmission via the wireless channel. The comparison be-
tween standard ZigBee chips designed according to IEEE 802.15.4
(2006) (e.g., CC2530 by Texas Instruments, 2011) and analog to dig-
ital converters (e.g., AD7988, 16-digit ADC from ANALOG DEVICES,
2012) indicates that the energy consumption of wireless transmis-
sion is at least one magnitude greater than that of data acquisition
and basic calculation. Consequently, less communication between
the sensor and the remote state estimator (or actuator) can sig-
nificantly prolong the lifetime of the sensors. Event-based sensor
data schedules provide an inspiring opportunity for reducing the
sensor-to-estimator communications.

Pioneered by the work of Åström and Bernhardsson (2002)
on Lebesgue sampling, event-based data scheduling for state
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estimation has received considerable attention during the last few
years. The optimal event-based finite-horizon sensor transmis-
sion scheduling problems were studied in Imer and Basar (2005),
and Rabi, Moustakides, and Baras (2006) for continuous-time and
discrete-time scalar linear systems, respectively. The results were
extended to vector linear systems in Li, Lemmon, andWang (2010)
by relaxing the zero mean initial conditions and considering mea-
surement noises. The tradeoff between the performance and the
average sampling period was analyzed in Li and Lemmon (2011),
and a sup-optimal event-triggering schemewith a guaranteed least
average sampling period was proposed. Adaptive sampling for
state estimation of continuous-time linear systems was consid-
ered in Rabi, Moustakides, and Baras (2012). Shi, Johansson, and
Qiu (2011) proposed a hybrid sensor data scheduling method by
combining time and event-basedmethods with reduced computa-
tional complexity. In Weimer, Araújo, and Johansson (2012), a dis-
tributed event-triggered estimation problemwas considered and a
global event-triggered communication policy for state estimation
was proposed by minimizing a weighted function of network en-
ergy consumption and communication costwhile considering esti-
mation performance constraints. The joint design of event-trigger
and estimator for first-order stochastic systems with arbitrary dis-
tributions was considered in Molin and Hirche (2012), where a
game-theoretic framework was utilized to analyze the optimal
trade-off between the mean squared estimation error and the ex-
pected transmission rate.

In addition to the scheduling issues, another important prob-
lem is to find the optimal estimate for a specified event-triggering
scheme, which provides additional information to the estimator
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Fig. 1. Block diagram of the overall system. Note that for the proposed one-
step event-triggered ML estimator, the feedback communication from the remote
estimator to the smart sensor (see the dotted arrow) is only requiredwhen an event
occurs at the smart sensor.

evenwhen nomeasurement is transmitted from the sensor. InWu,
Jia, Johansson, and Shi (2013), the Minimum Mean Squared Error
(MMSE) estimator was derived based on the Gaussian assumption
of the prediction error, and the tradeoff between the sensor-to-
estimator communication rate and the performance was analyti-
cally characterized. In Sijs and Lazar (2012), a general description of
event sampling was proposed, and a state estimator with a hybrid
update was derived using a sum of Gaussians approach to reduce
the computational complexity. Trimpe and D’Andrea (2012) con-
sidered the variance-based event-triggering conditions, and the
convergence of the resultant variance iterations to a periodic so-
lution was proved. For linear Gaussian systems with periodic sen-
sor measurements, the MMSE estimate, namely, the Kalman filter,
coincides with the Maximum Likelihood (ML) estimate (Rauch,
Striebel, & Tung, 1965). However, this equivalence no longer holds
when the sensormeasurements are updated according to an event-
triggered scheme, due to the non-Gaussianity of the conditional
Probability Distribution Functions (PDFs).

In this paper, the event-based state estimation problem is con-
sidered under the maximum-likelihood estimation framework.
We study the remote state estimation of a process based on the
measurements taken by a battery-powered smart-sensor on the
process side, the output of which is transmitted to the remote
estimator through a wireless channel. Foreshadowed by the dis-
cussions above, we assume that wireless transmission consumes
more energy than basic calculation, and thus an event-based data-
scheduler is proposed on the process side to prolong the battery
life (utilizing the limited calculation capacity of the smart sensor).
The main contributions of this paper are two folds:

(1) The structure of the event-based ML state estimator is
provided. We show that the optimal estimate is parameterized
by a special time-varying Riccati equation, and the computational
complexity increases exponentially with the time horizon. Note
that the solution to the Riccati equation is not necessarily the
covariance matrix of the estimation error for event-basedML state
estimation problems, due to event-based data updating.

(2) For ease in implementation of the event-basedMLestimator,
a one-step event-based ML estimation problem is formulated,
and its solution is shown to behave like the Kalman filter with
intermittent observations (Sinopoli et al., 2004) and only requires
feedback communication when an event occurs at the smart
sensor. This is different from the results in Wu et al. (2013), where
feedback communication is always needed. Also, discussions on
the communication rates are provided from the process side.

The rest of the paper is organized as follows. Section 2 provides
the system description and problem formulation. The structure of
the solution to the event-based ML state estimation problem is
derived in Section 3, where the implementation issues are also
discussed. In Section 4, the one-step event-based ML estimation
problem is solved and the communication rate is briefly analyzed.
Section 5 presents a numerical example to illustrate the efficiency
of the proposed results, followed by some concluding remarks in
Section 6.

Notations: N and N+ denote the sets of nonnegative and
positive integers, respectively. For a, b ∈ N and a ≤ b, ua:b denotes
{u(a), u(a + 1), . . . , u(b)}. R denotes the set of real numbers. For
m, n ∈ N+, Rm×n denotes the set of m by n real-valued matrices,
whereas Rm is short for Rm×1. For Z ∈ Rm×n, Z⊤ denotes the
transpose of Z , whereas Z−⊤ denotes (Z⊤)−1 if Z is square and
nonsingular. For a random variable x, E (x) denotes its expectation,
and x denotes its realization.

2. Problem formulation

Consider the system in Fig. 1. The process is Linear Time-
Invariant (LTI) and evolves in discrete time driven by white noise:

xk+1 = Axk + wk, (1)

where xk ∈ Rn is the state, and wk ∈ Rn is the noise input, which
is zero-mean Gaussian with covariance Q > 0.

The initial state x0 is Gaussian with E (x0) = µ0 and covariance
P0 > 0. Assume that A is nonsingular. Note that this assumption is
not restrictive as (1) is typically amodel that comes from discretiz-
ing a stochastic differential equation dx = A1xdt + B1dw, in which
case A = eA1h, for a sampling period h, is clearly invertible. The
state information is measured by a battery-powered smart sen-
sor, which communicates with a remote state estimator through
a wireless channel, and the measurement equation is

yk = Cxk + vk, (2)

where vk ∈ Rm is zero-mean Gaussian with covariance R > 0.
In addition, x0, wk and vk are uncorrelated with each other. We as-
sume that (C, A) is detectable. For consideration of the limited sen-
sor battery capacity and the communication cost, an event-based
data scheduler is integrated in the sensor. At each time instant k,
themeasurement information yk is sent directly to the event-based
scheduler; the estimator provides a prediction x̂k|k−1 of the current
state xk and sends the prediction x̂k|k−1 to the scheduler via the
wireless channel. Based on yk and x̂k|k−1, the scheduler computes
γk according to the following event-triggered condition:

γk =


0, if ∥yk − Cx̂k|k−1∥∞ ≤ δ
1, otherwise (3)

and decideswhether to allow a data transmission, where δ is a tun-
ing parameter that determines the sensitivity of the event-based
scheduler. Only when γk = 1, the sensor transmits yk to the esti-
mator. As a result, if γk = 1, the estimator knows the exact value
of yk; otherwise it only knows that the value of yk lies in a known
region. The ultimate goal of the estimator is to provide an estimate
x̂k|k of xk based on the known information. Notice that this type of
feedback communication strategy is not energy-saving itself and
an alternative strategy is to include a copy of the estimator in the
scheduler, which instead adds to the computational burden of the
scheduler. We will show that the obtained result in this paper in
fact does not require the feedback communication except when an
event occurs, and only a simple prediction step is needed for the
scheduler during a non-event time instant.

In this paper, the first objective is to determine, at time k, the
optimal estimate x̂k|k of xk that maximizes the joint probability
distribution function of x0:k and y1:k:

fx0:k,y1:k(x̂0|0, x1, . . . , xk, ŷ1, . . . , ŷk) (4)

where x0:k and ŷ1:k are the optimization parameters. If γt = 1,
ŷt = yt ; otherwise the value of ŷt lies in [y

t
, ȳt ] at time instant

t , where

y
t
= Cx̂t|t−1 − δ1m,

ȳt = Cx̂t|t−1 + δ1m,



Download English Version:

https://daneshyari.com/en/article/10398684

Download Persian Version:

https://daneshyari.com/article/10398684

Daneshyari.com

https://daneshyari.com/en/article/10398684
https://daneshyari.com/article/10398684
https://daneshyari.com

