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a b s t r a c t

In this paper, the Hammerstein identification problem with correlated inputs is studied in a prediction
error framework using separable least squares methods. Thus, the identification is recast as an
optimization over the parameters used to describe the nonlinearity. A sufficient condition is derived that
guarantees that the identification problem is quasiconvex with respect to the parameters that describe
the nonlinearity. Simulations using both IID and correlated inputs are used to illustrate the result.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Many of the identification problems inwhich the system is non-
linear in the parameters are non-convex. Hence, iterative methods
can get stuck in one of the local minima of the criterion function
(Ljung, 2008). An often successful heuristic approach, which does
not guarantee the global solution, is random initialization of the
parameter vector. This difficulty can be avoided if the identifica-
tion can be formulated as a convex or quasiconvex optimization.

The Hammerstein model, a memoryless nonlinearity followed
by a dynamic linear element, has been used to model a variety
of nonlinear systems including heat exchangers (Eskinat, John-
son, & Luyben, 1991), stretch reflexes (Dempsey & Westwick,
2004), satellite and microwave communication links (Prakriya &
Hatzinakos, 1997), and solid oxide fuel cells (Jurado, 2006). Its
identification has been extensively studied. The earliest contribu-
tions were an iterative method, proposed by Narendra and Gall-
man (1966), and a non-iterative but overparameterized approach
(Chang & Luus, 1971). Methods based on the properties of separa-
ble processes,which allow the linear element to be recovered using
essentially linear system identification methods, have also been
extensively studied (Billings & Fakhouri, 1982; Enqvist, 2010).
Finally, prediction methods based on separable nonlinear least
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squares (SNLS) optimization (Golub & Pereyra, 1973; Sjoberg &
Viberg, 1997) have been proposed for certain classes of Hammer-
stein models (Bai, 2002; Dempsey &Westwick, 2004; Westwick &
Kearney, 2001).

The convergence of the iterative algorithm for theHammerstein
model was extensively studied by Bai and Li (2004), who showed
that the appropriate use of a normalization step can guarantee
convergence. Furthermore, they discussed the convexity of the
identification problem and proved that all of the estimation prob-
lems encountered in the iterative algorithm are convex, although
they did not address the convexity of the overall identification
problem and the proof was limited to Independent and Identically
Distributed (IID) inputs.

Cai and Bai (2011) showed that by using an SNLS approach, the
loss-function in the Hammerstein identification problem could be
expressed as a function of the inner product between the system
and model parameter vectors. In this paper, we will extend the
results from Cai and Bai (2011) in two ways. First, the FIR linear
element will be replaced with an expansion onto a basis of IIR
filters, such as the rational orthogonal basis functions considered
in Heuberger, van den Hof, and Wahlberg (2005). Second, the
restriction to IID inputswill be relaxed to include correlated inputs.
We will show that a result similar to that in Cai and Bai (2011) can
be obtained; however under correlated inputs, the resulting inner
product involves an orthogonal projection onto a subspace defined
by the properties of the input and of the basis elements used to
represent the linear and nonlinear elements.

Preliminary results have been previously published in the con-
ference paper (Rasouli, Westwick, & Rosehart, 2011). The present
contribution extends those results, removing the requirement for
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Fig. 1. Block diagram of the Hammerstein model consisting of static nonlinearity
followed by a linear dynamic system.

an orthogonal expansion basis for the nonlinearity, and establish-
ing the conditions necessary to invoke the law of large numbers.
New simulations using an IIR linear element have been included.

The outline of this paper is as follows: Section 2 will introduce
the Hammerstein model used throughout the paper and list the
assumptionsmade regarding themodel’s inputs and elements. The
problem formulation and identification of the Hammersteinmodel
will be described in Section 3. Section 4 will provide sufficient
conditions under which the problem is quasiconvex for correlated
inputs. Simulation results for clarifying the presentedmaterials are
shown in Section 5. Section 6 will conclude the paper.

1.1. Notation

This paper deals with discrete time models. Thus, the time in-
dex, t , is an integer, and q is the forward shift operator. Thus,
q−1x(t) = x(t − 1). Bold lower and uppercase roman letters will
denote vectors and matrices, respectively. The vector xwill be un-
derstood to contain elements of the signal, x(t). Similarly,G(q)xde-
notes a vector that contains the signal G(q)x(t), and φ(u) denotes
a vector obtained by applying the function φ(·) to the individual
elements of the vector u.

2. Hammerstein model

A Hammerstein model comprises a memoryless nonlinearity
followed by a linear filter as shown in Fig. 1. In this study, the
nonlinearity will be represented by a basis expansion of known
maximum degree,M . Thus,

x(t, c) =

M
i=1

ciφi(u(t)), (1)

where u(t) is the input signal, x(t) is the intermediate signal, the
ck are the expansion coefficients contained in the vector c , and the
φk(·) are a set of basis functions. Such expansions, including poly-
nomials and various linear and cubic splines, have been widely
used in nonlinear block structured models, such as the Hammer-
stein cascade (Dempsey & Westwick, 2004; Van Pelt & Bernstein,
2001).

Similarly, the linear element will be modeled using an expan-
sion

y(t, c, h) =

K
j=1

hjGj(q)x(t, c) (2)

where theGj(q) are a bank of linear time-invariant filters. Common
choices for these filters include delays, Gj(q) = q−j, or discrete La-
guerre or Kautz filters (Heuberger et al., 2005).

2.1. Model class

The model may be represented by the parameters of the non-
linearity and linear filter, [cThT

]
T . Thus, the output of the Hammer-

stein model can be written as

y(t, c, h) =

M
i=1

K
j=1

cihjGj(q)φi(u(t)). (3)

To ensure that all the signals are well behaved, we assume the fol-
lowing:

MC1 The filters Gj(q) are exponentially stable.
MC2 The basis functions φi(·) are continuous.
MC3 The parameter vectors have finite norms, ∥c∥ < Kc < ∞ and

∥h∥ < Kh < ∞ for some finite constants Kc and Kh.

Note, however, that this representation contains a redundant
degree of freedom, in that the models [cThT

]
T and [KcT 1

K h
T
]
T ,

where K is any non-zero real number, will produce identical out-
puts, given the same input. Thus, it is customary to normalize ei-
ther c or h.

2.2. Assumptions

A1 The input, u(t), is the output of a stable linear time-invariant
filter that is being driven by an IID sequence.

A2 The input probability density is such that the output of each
nonlinear basis function, φi(u(t)) for i = 1 . . .M , has finite
fourth-order moments.

A3 The true system is within the model class described above. Let
c0 and h0 be the parameter vectors containing the nonlinearity
coefficients and filter weights, respectively. These are both
assumed to be non-zero, ∥c0∥ > 0 and ∥h0∥ > 0.

A4 The output is corrupted by an additive, Gaussian IID noise
process of finite variance, σ 2

n , that is independent of the input,
u(t).

3. Problem formulation and identification

The system identification problem is to estimate c and h, to
within the unknown internal gain described above, givenmeasure-
ments of the input, and the possibly noise corrupted output, y(t).

Let y0 = y(c0, h0) be the noise-free output of the true system.
Since the measurement noise is assumed to be Gaussian and IID
(A4), and there is no undermodelling (A3), minimizing the sum
of squared prediction errors produces the maximum likelihood
estimate of the model parameters. The prediction errors are given
by

ϵ(c, h) = y0 + n − y(c, h)

= ϵm + n (4)

where ϵm is the modeling error. This leads to the loss function

VN(c, h) =
1
N

[ϵT (c, h)ϵ(c, h)]

=
1
N

[ϵTm(c, h)ϵm(c, h) + 2ϵTm(c, h)n + nTn]. (5)

Lemma 3.1. For models in the model class defined by (3) under
conditions MC1–MC3, and under Assumptions A1, A2 and A4, the
loss function converges uniformly to

lim
N→∞

VN(c, h) = E[ϵ2
m(c, h, t)] + σ 2

n

as N → ∞.

Proof. Given the model class, Assumptions A1 and A2 guarantee
the conditions necessary to apply Lemma 3.1 from Ljung (1978),
so that

lim
N→∞

VN(c, h) = E[VN(c, h)]

with probability 1. By A4 the noise is independent of the input,
all cross-terms vanish in expectation, and hence in the limiting
average. �
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